GOVERNMENT OF ASSAM STATE COUNCIL FOR TECHNICAL EDUCATION DIRECTORATE OF TECHNICAL EDUCATION, ASSAM

FINAL DRAFT SYLLABUS OF 1st SEMESTER

Table of Contents

S. No.	Title	From	То
1	General Course Structure & Credit Distribution	4	8
2	Detailed 1 st Semester Curriculum Contents	10	62
3	Curriculum Development Cell, Subject wise list of Committee Members and Reviewers	63	65

GENERAL COURSE STRUCTURE & CREDIT DISTRIBUTION

A. Definition of Credit:

1 Hr. Lecture (L) per week	1 credit
1 Hr. Tutorial (T) per week	1 credit
1 Hr. Practical (P) per week	0.5 credit
2 Hours Practical (P) per week	1 credit

B. Range of Credits:

In the light of the fact that a typical Model Four-year Under Graduate degree program in Engineering has about 160 credits, the total number of credits proposed for the three-year Diploma program in Engineering & Technology is 120.

C. Structure of Diploma Engineering program:

The structure of Diploma Engineering program shall have essentially the following categories of courses with the breakup of credits as given:

Sr. No.	Category	Suggested Breakup of Credits
1.	Humanities & Social Sciences courses	8*
2.	Basic Science courses	19*
3.	Engineering Science courses	15*
4.	Program Core courses (Branch specific)	45*
5.	Program Elective courses (Branch specific)	12*
6.	Open Elective courses (from other technical and /or emerging subjects)	9*
7.	Project work, seminar and internship in industry or elsewhere	12*
8.	Audit Courses [Environmental Sciences, Induction training, Indian Con- stitution, Essence of Indian Traditional Knowledge etc.]	(non-credit)
	Total	120*

*Minor variation is allowed as per need of the respective disciplines.

D. Course code and definition:

Course code Definitions	
L	Lecture
Т	Tutorial
Р	Practical
HS	Humanities & Social Sciences Courses
BS	Basic Science Courses
ES	Engineering Science Courses
PC	Program Core Courses
PE	Program Elective Courses
OE	Open Elective Courses
AU	Audit Courses
SI	Summer Internship
PR	Project
SE	Seminar

SCTE, ASSAM |

E. Course level coding scheme:

Three-digit number (odd numbers are for the odd semester courses and even numbers are for even semester courses) used as suffix with the Course Code for identifying the level of the course e.g.

101, 102 ... etc. for first year

201, 202 Etc. for second year

301, 302 ... for third year

INDUCTION PROGRAM

Please refer Appendix IV for guidelines.

The Essence and Details of Induction program can also be understood from the 'Detailed Guide on Student Induction program', as available on AICTE Portal, although that is for UG students of Engineering & Technology (Link:<u>https://www.aicteindia.org/sites/default/files/Detailed%20Guide%20on%20</u> Student%20Induction%20program.pdf).

Induction program (mandatory)	Two-week duration
Induction program for students to be	Physical activity
offered right at the start of the first	Creative Arts
year.	Universal Human Values
	Literary
	Proficiency Modules
	Lectures by Eminent People
	Visits to local Areas
	Familiarization to Dept./Branch & Innovations

F. Mandatory Visits/Workshop/Expert Lectures:

- a) It is mandatory to arrange one industrial visit every semester for the students of each branch.
- b) It is mandatory to conduct a One-week workshop during the winter break after fifth semester on professional/ industry/ entrepreneurial orientation.
- c) It is mandatory to organize at least one expert lecture per semester for each branch by inviting resource persons from domain specific industry

G. Evaluation Scheme for 1st Semester of Diploma in Engineering courses under State Council for Technical Education (SCTE), Assam

For Theory Courses:

(The weightage of Internal assessment is 40% and for End Semester Exam is 60%) The student has to obtain at least 40% marks individually both in internal assessmentand end semester exams to pass.

For Practical Courses:

(The weightage of Internal assessment is 60% and for End Semester Exam is 40%) The student has to obtain at least 40% marks individually both in internal assessmentand end semester exams to pass.

For Summer Internship / Projects / Seminar etc.

Evaluation is based on work done, quality of report, performance in viva-voce, presentation etc.

Note: The internal assessment is based on the student's performance in mid semester tests (two best out of three), quizzes, assignments, class performance, attendance, viva-voce in practical, lab record etc.

H. Mapping of Marks to Grades

Each course (Theory/Practical) is to be assigned 100 marks, irrespective of the number ofcredits, and the mapping of marks to grades may be done as per the following table:

Range of Marks	Assigned Grade
91-100	AA/A ⁺
81-90	AB/A
71-80	BB/B ⁺
61-70	BC/B
51-60	CC/C ⁺
46-50	CD/C
40-45	DD/D
< 40	FF/F (Fail due to less marks)
-	F^{R} (Fail due to shortage of attendance and therefore, to repeat the course)

I. Credit Distribution, Mark Distribution and Break up of Internal Assessment Marks as per following table:

a) Credit Distribution:

Semester-I

S. No.	Course Code	Course Title	L	Т	Р	Credit
1	BS-101	Mathematics-I	2	1	0	3
2	BS-102	Applied Physics -I	2	1	0	3
3	BS-105	Applied Chemistry	2	1	0	3
4	HS-101	Communication Skills in English	2	0	0	2
5	ES-101	Engineering Graphics	0	0	3	1.5
6	ES-103	Engineering Workshop Practice	0	0	6	3
7	BS-107	Applied Physics Lab - I		0	2	1
8	BS-109	Applied Chemistry Lab -I	0	0	2	1
9	HS-103	Sports and Yoga	0	0	2	1
10	HS-105	Communication Skills in English Lab	0	0	3	1.5
TOTAL CREDIT=				20		
	Total Hours per week = 29 [L=8; T=3; P=18]					

b) Marks Distribution

Internal Internal **Practical** Assessment ESE Assessment Total Pass Test S. Course (Practical) (Theory) **Course Title** Marks Marks Code No. Total Pass Total Pass **Total** Pass Total Pass (Course) (Course) **BS-101** Mathematics-I 40 16 60 24 100 40 _ 1 _ _ -2 40 24 100 **BS-102** Applied Physics -I 16 60 40 -_ --3 **BS-105 Applied Chemistry** 40 16 60 24 100 40 ----Communication HS-101 40 60 24 100 40 4 16 _ _ _ _ Skills in English ES-101 Engineering Graphics 100 60 24 40 16 40 5 _ _ _ _ Engineering ES-103 24 40 16 100 40 6 60 _ _ _ _ Workshop Practice Applied Physics Lab **BS-107** 7 60 24 40 16 100 40 _ _ _ _ Ι Applied Chemistry **BS-109** 8 60 24 100 40 40 16 _ _ Lab -I 9 HS-103 Sports and Yoga 24 40 16 100 40 60 ----Communication 10 HS-105 60 24 40 16 100 40 _ _ Skills in English Lab 1000 Total

<u>Semester – I</u>

c) Break Up of Internal Assessment Marks

Internal Assessment for Theory (TA+HA&CT)

	Teacher's A	Assessment	(TA)	Home Ass	ignment &	Class	Test	
Component			(HA&CT)				Total	
component	Attendence	Distilian	Class	Home	Presentation/	Ouia	Class	Total
	Attenuance	Discipline	Participation	Assignment	Seminar	Quiz	Test	
Maximum	5	1	2	4	6	2	20	40
Marks	5	1	2	4	0	2	20	40
Note: Three (3) class tests must be conducted for each course. For calculation of Internal Assessment, best								
two (2) class tests out of the three (3) conducted is to be considered.								

8

Internal Assessment for Practical (PA)

Component	Maximum Marks
Teacher's Assessment (TA)	· · · ·
Attendance	10
Discipline	2
Practical Assignment	· · · ·
Practical Work and/or Laboratory Report	30
Presentation	10
Viva	8
Total	60

- d) Grading System proposed is Absolute Grading System.
- e) Conversion factor from Cumulative Grade Point Average (CGPA) to Percentage (%) is 10.

Detailed First Semester Curriculum Contents (Common to all Branches)

1. Course Title: Mathematics-I

- 1. COURSE Title: Mathematics –I
- 2. COURSE CODE: BS-101
- 3. Semester: First Semester
- 4. **Objectives:** The main objectives of this course are:
 - i) To learn about Complex numbers.
 - ii) To learn ways of solving binomials, finite and infinite series.
 - iii) To learn about equations involving large number of unknowns.
 - iv) To learn application of Trigonometry, Mensuration and plane figures.
- 5. Course Outcomes: At the end of the course, students will be able to:
 - CO -1 Recognize and differentiate between Real and complex numbers.
 - CO-2 Obtain solutions for finite and infinite series expressions.
 - CO 3 Solve equations having large numbers of unknowns.
 - CO 4 Learn Basic Trigonometric concepts and its applications in various domain.
 - CO-5 Obtain results for physical problems related to area and volume.

CO-6 Identify and formulate the equation of straight lines in different forms.

6. Teaching scheme:

Teaching scheme(in hours)				
Lecture	Tutorial	Total per week		
2	1	3		

Total Number of classes	45
Theory	30
Tutorial	15

7. Detailed course content:

Chapter No	Chapter Title	contents	Intended learning outcomes	Hours (Theory) 30
Group Hours:	- A : Algebra 16 Marks: 32			
A1	Complex numbers	 1.1 Definition, Geometric representation, Modulus, amplitude, Polar form of a complex number. 1.2 Rationalization, addition, Multiplication, Conjugate, cube root of unity. 	 Recognize and define Cartesian and Polar form of complex number. Locate it in argand plane. Carry out algebraic operations on complex numbers 	3
A2	Permutation and combination	 2.1 Factorial Notation and baic principle of counting.(Simple problems only) 2.2 Definition of formulae for Permutation and combination.(Simple problems only) 	 Arrangement of elements(Similar and unique) Combination of elements. 	2
A3	Binomial Theorem	3.1 Binomial Theorem for positive integral index (Statement only), general term, middle term, Specific term.	1. Form and expand different types of Binomial expression.	2
A4	Logarithm	4.1 Definition, Laws of Logarithm.4.2 Problems related to Laws of Logarithm and application.	1. Convert product and quotient of large numbers into simple sums and differences.	2
A5	Series	 5.1. Arithmetic Progression Series, arithmetic mean, Sum to n- terms. 5. 2. Geometric Progression Series, Geometric mean, Sum to n-terms. 5.3. Sum to infinity of a GP series. 	 Use and solution of series expressions having equal intervals. Use and solution of series expressions having common ratio. Calculation of the possible finite Sum of an infinite series. 	2
A6	Matrix	 6.1 Definition, Type of matrix- row matrix, column matrix, Square matrix, diagonal matrix, unit matrix, Symmetric matrix, Skew-Symmetric matrix. 6.2 Algebra of matrices: Equality, addition, subtraction, Scalar multiplication, multiplication. 	 Presentation of large data in an organized expression. Applying algebraic operations on matrices under certain conditions. 	2

1ST SEMESTER

A7	Determinants	7.1. De Determ Minors 7.2 Pro probler 7.3. So equatio	finition and expansion of ninants of third orders. , cofactors. perties of Determinant and ns using properties. lution of simultaneous ons using crammer's rule	 The expression of square matrix as a Determinant with a value. Solution of systems of linear equations. 	3
GROUP HOURS	B TRIGONOME : 7 MARKS	TRY : 13			
B1	Trigonometric Ratios	1 as 1 di pr di 1 a	 .1. Compound angles and ssociated angles. .2. Transformation of sum or ifferences into products and roducts into sum or ifferences. .3. Multiple and sub-multiple ngles. 	 To get fair knowledge of angle, distance, height with reference to different shapes objects etc. Use of trigonometry in different field. 	3
B2	Inverse Trigonometric Functions	2. co 2. tr	 .1. Definition and basic oncepts. .2. Properties of Inverse igonometric functions. 	Uses of Inverse trigonometric functions to calculate angles and inclinations under different situations.	2
B3	Properties of triangles	3. si 3. (f	.1. Relation between the ides and angles of a triangle..2. Sine- cosine formulae.Formulae only for concept)	Relation between different trigonometric functions.	2
GROUP HOURS	C MENSURATIO : 4 MARKS :	DNS : 8			
C1	Area Curvilinea Figures	ar	1.1 Area Curvilinear Figures using Simpson's $\frac{1}{3}$ rule	Calculation of area of non- linear figures.	1
C2	Volume and Su area	rface	2.1. Volume and Surface are of prism, Pyramid, sphere and Cone. Frustum of Pyramid and cone. (Simple problems only).	a Calculation of volume and area of some three dimensional objects.	3
GROUP HOURS	D CO-ORDINAT	TE GEC : 7	OMETRY OF TWO-DIMEN	ISIONS	
D1	Straight Line		1.1. Distance formulae, Section formulae, Slope and Gradient, Different forms o Straight lines; point-slope form, point –point form, slope-intercept form,	 Concept and use of Cartesian co-ordinates. To get a good knowledge of different forms of straight lines, there formation and some properties with respect 	3

1ST SEMESTER

13

intercept form, perpendicular form.	to each other.	
1.2. Angle between two straight lines, equation of parallel and perpendicular straight lines.		

9. Distribution of Marks :

Chapter no.	Chapter Title	Type of question			
		Objective Type	Short questions	Descriptive questions	
A1	Complex Number	2	2	3	
A2	Permutation and combination	1	2		
A3	Binomial Theorem	1	2		
A4	Logarithm	1	2	3	
A5	Series	1	2	3	
A6	Matrix	1	2		
A7	Determinants	1		3	
B1	Trigonometric Ratios	1	2	3	
B2	Inverse Trigonometric Functions	1		3	
B3	Properties of triangles	1	2		
C1	Area Curvilinear Figures			3	
C2	Volume and Surface area	2		3	
D1	Straight Line	2	2	3	
		15	18	27	60

10. Suggested implementation strategies: The syllabus can be completed by taking regular classes along with tutorial classes. Audio-Visual aids also can be used.

11. Prerequisites: Class X Standard Algebra, Trigonometry. Straight line (co-ordinate) Mensuration.

12. Suggested learning resources:

1. An introduction to Polytechnic Mathematics Vol-1 by Ajanta Choudhury, Parbin Ahmed, Geetali Das.

- 2. Applied Mathematics for class XII (volI and II) by R.D Sharma
- 3. Engineering mathematics by H.K Das.
- 4. Higher Trigonometry by Das and Mukherjee.

13. TABLE OF SPECIFICATION FOR THEORY

Sr. no	Topic (a)	Time allotted in hours (b)	Percentage weightage(c)	k	С	А	НА
1	Algebra	16	53.3%	8	14	10	
2	Trigonometry	7	23.3%	3	6	4	
3	Mensuration	4	13.3%	2	2	4	
4	Co-ordinate geometry of two dimensions	3	10%	2	2	3	
	Total	30	100				

K = knowledge C = Comprehension A = application

HA = Higher than application (Analysis, Synthesis, Evaluation).

$$C = \frac{b}{\sum b} \times 100$$

2. Course Title: Applied Physics – I

- 1. Course Title : Applied Physics I
- 2. Course Code : BS-102
- 3. Semester : 1st semester
- 4. Prerequisites : High School Level Physics
- 5. Rationale of the subject: Physics is the foundation of all core technology subjects. Study of Physics is essential for Diploma holders in engineering and technology to develop in them proper understanding of physical phenomenon, scientific temper and engineering aptitude. Curriculum of Applied Physics includes fundamental concepts used in Industrial Applications. So, physics is taught in the 1st and 2nd semester in all disciplines of Diploma Engineering.
- 6. LEARNING OBJECTIVES: The main objectives of this course are to:
 - a) learn and understand different system of measurement and errors in measurements
 - b) learn different physical quantities with units and dimensions.
- c) learn, understand and apply different laws of motions and laws of Gravitations.
- d) learn, understand and apply the laws and concept of static and current electricity.
- e) learn, understand and apply the concept of electromagnetism.
- f) learn, understand and apply the concept of semiconductor.
- g) tackle engineering problems in their chosen area of applications.
- 7. Course outcomes: After completion of the course, students will be able to:
 - **C.O.1**: identify different systems of units and convert units from one system to another as well as conversant with practical units and understand errors in measurement.
 - **C.O.2:** understand and apply equations of motion and their applications.
 - **C.O.3**: Understand the concept of Circular motion, centripetal, centrifugal forces and able to apply in practical application.
 - **C.O.4:** Understand the concepts of charge, current, resistance, capacitance and acquire basic knowledge on semiconductor and applications of p-n junction diode.
 - **C.O.5:** learn the applications of electromagnetic induction in transformers, motors etc. in industrial engineering.

8. Teaching Scheme (in hours):

	Theory	Practical	Total	
Lectures	Tutorial	Class Test		
30	30	3	30	93

9. Teaching scheme (in hours)/ week

Lectures	Tutorial	practical	Credits
2	1	0	3

10. Examination Scheme:

Theory				Practical				Total Marks
Examination Sessional			Practical Viva		Sessional			
Full	Pass	Full	Pass	Full	Pass	Full	Pass	200
Marks	Marks	Marks	Marks	Marks	marks	Marks	Marks	
60	24	40	16	40	16	60	24	

11. DETAILED COURSE CONTENTS:

Chapter	Title of Chapter	Topics and Sub-topics	Teaching Hours	Marks
1	UNITS AND DIMENSIONS	1.1Physical quantities, fundamental and derived with examples; Need of measurements, Definition of Unit and its importance, fundamental and derived units, system of units (CGS, MKS, FPS and SI units) 1.2Errors in measurements, random and systematic error; absolute error, relative error and percentage	Hours 3	5
		of measurements. Significant figures, rules to find		

1ST SEMESTER

	_
1	
- -	/

		significant figures in calculation with examples.		
		1.3Dimensions of physical quantities,		
		dimensional formulae; Principle of		
		homogeneity of dimensions, Applications of		
		dimensional analysis (conversion of one		
		system of units to other, checking of		
		dimensional equations and derivation of		
		possible relationship between physical		
		quantities); Limitations of dimensional		
		analysis.		
		2.1Definition of Scalar and Vector quantities		
2	BASIC	(examples), geometrical representation of a vector,		
	MECHANICS	addition and subtraction of vectors, types of vectors.		
	(Force and Motion)	Triangular and Parallelogram law of vector addition,		
	,	Expressions for magnitude and direction of resultant		
		vector (deduction not required) with numerical		
		examples. Resolution of vectors.		
		Scalar and Vector Product of two vectors with		
		physical examples; (numerical examples).	7	12
		2.2Recapitulation of Equation of motions (Deduction		
		not necessary) and associated numerical problems.		
		2.3 Revision of Newton's laws of motion, measurement of force and its units, Linear momentum, law of conservation of linear momentum and its application to recoil of gun, Impulse and its applications. (numerical problems)		
		 2.4 Circular uniform motion, definitions of angular displacement, angular velocity, angular acceleration, time period, frequency and their units; relation between linear and angular velocity. Centripetal and Centrifugal forces and practical applications; Banking of roads and railway tracks, super elevation; Bending of a cyclist, the Cream separator, the engine flywheel (details do not require). 2.5 Rotational motion, torque, angular momentum and 		

1ST SEMESTER

	their relation, Moment of inertia and its expression,		
	radius of gyration, Relation between torque and		
	angular acceleration, kinetic energy of rotating body,		
	Acceleration of a body rolling down an inclined plane.		
Work, Power and Energy	3.1Recapitulation of Work, Power and energy, types of energy (K.E and P.E) and their units.		
	Dimensions of work, power and energy.	2	4
	3.2Work-energy theorem, Law of conservation of energy, conservation of mechanical energy for a freely falling body, numerical problems.		

4	GRAVITY AND GRAVITATION	 4.1Newton's law of gravitation, gravity, acceleration due to gravity, relation between 'G' and 'g', their units, variation of g with altitude and depth, Centre of gravity and Centre of mass. Escape velocity, orbital velocity, artificial satellite. (simple idea), Geo-stationery Satellite. 	2	4
5	ELECTRO STATICS	 ELECTRO STATICS 5.1 Concept of Electric charge according to Modern Electron Theory, Inverse Square law of Electrostatic force, permittivity, Unit of Charge, Electric Field, Electric Intensity, Electric lines of Force and its properties, concept of electric flux, Gauss's law (application not required). 5.2 Electric Potential and its unit, relation between potential and intensity, calculation of electrostatic Potential at a point due to a point charge. 5.3. Capacity of a condenser, Capacitor and its working principle, Capacitance and its units, capacitance of parallel plate capacitor, series and parallel combination of condensers, numerical problems. Dielectric and its effect on capacitance. 		7
	CURRENT	 6.1Potential difference and current with their mathematical expression and units. Electromotive force, difference between e.m.f. and P.D. 6.2Primary and Secondary Cell, Difference between primary and secondary cell, storage cell, internal resistance of cell, Groupings of cell- series, parallel 	5	10

3

6	ELECTRICITY	 and mixed grouping of cells. 6.3Basic D.C circuit: Ohm's Law, verification and mathematical expression of Ohms law, Units of resistance, specific resistance or resistivity, conductance, effect of temperature on resistance. Series and parallel combination of resistances. Numerical. 6.4Kirchhoff's Laws with explanations. Wheatstone bridge principle with its proof, meter bridge and post office box. 6.5 Heating Effect of Current: Joule's Law of heating, Electric energy and Power, numerical problems. 		
7	ELECTRO- MAGNETISM	 7.1 Magnets, properties of magnet, magnetic field, units of magnetic field, lines of magnetic field. 7.2 Biot-Savart law, direction of magnetic field produced by current carrying conductor (Right hand thumb rule for linear and circular current) magnetic field due to current carrying straight conductor, circular loop and solenoid (derivation not required), 7.3Force on a charge moving in a magnetic field, definition and unit of magnetic induction (strength of magnetic field), direction of magnetic force (Fleming's left-hand rule), force on a current carrying conductor placed in a magnetic field, force between two straight and parallel conductors(derivation not required). 7.4Electromagnetic Induction, e.m.f. induced in a coil due to magnetic induction, Lenz law, self and mutual induction, Fleming –Right hand rule. 7.5Transformer, step up and step-down transformer, losses in a transformer and long-distance transmission of A.C by transformer. 	5	12
8	ELECTRONICS AND SEMI CONDUCTOR	 8.1Energy band in solids (Idea only). Conductors, semiconductors, and Insulators in terms of energy band diagram, intrinsic and extrinsic semiconductor, P-type and N-type semiconductor 	3	6
		8.2. P-N junction diode, forward and reverse bias. P-N junction diode as half wave rectifier, full wave rectifier and bridge rectifier, simple idea of LED and its use. Junction transistors, P-N-P and N-P-N transistor (Idea only).		

12. Distribution of Marks:

Chapter	Chapter Title	Teaching	Ту	pe of Quest	ion	
No		Hours	Objective	Short	Descriptive	Total
			type	Question	Question /	Marks
			Compulsory		Numerical	
1	Units and Dimension	3	2	1	2	5
2	Basic Mechanics	7	3	3	6	12
	(Force and Motion)					
3	Work, Power and energy	2	2	1	1	4
4	Gravitation and	2	-	2	2	4
	Gravity					
5	Electrostatics	3	2	2	3	7
6	Current electricity	4	2	2	6	10
7	Electromagnetism	4	2	3	6	12
8	Electronics and Semiconductor	3	1	2	3	6
Total		30	15	15	30	60

13. DETAILED TABLE OF SPECIFICATIONS FOR THEORY.

Sr. N	Торіс	OBJECTIVE TYPE		SHORT ANSWER TYPE			ESSAY TYPE								
0.		К	C	Α	Τ	K	C	A	H A	Т	K	C	A	HA	Т
1	Units and Dimension	1	1	-	2	1	-	-	-	1	1	-	1	-	2
2	Basic Mechanics (Force and Motion)	1	-	2	3	1	-	2	-	3	1	2	3	-	6
3	Work, Power and energy	1	1	-	2	-	-	1	-	1	-	-	1	-	1
4	Gravitation and Gravity	-	-	-	-	1	1	-	-	2	-	1	1	-	2
5	Electrostatics	1	-	1	2	-	1	1	-	2	1	-	2	-	3

6	Current electricity	1	-	1	2	1	1	1	-	2	1	1	2	-	4
7	Electromagnetism	1	-	1	2	1	-	1	1	3	1	1	3	-	5
8	Electronics and Semiconductor	1	-	-	1	-	1	-	-	1	1	-	2	-	3

K=Knowledge, C= Comprehension, A= Application, HA= Higher than application (analysis, synthesis, Evaluation) and T=Total

Sr.		Time	Percentage				
No:	Topics	allotted	Weightage	Κ	С	А	HA
	(a)	in hours	(c)				
		(b)	%				
1	Units and Dimension	3	10	3	1	1	-
2	Basic Mechanics	7	23.33	3	2	7	-
	(Force and Motion)						
3	Work, Power and energy	2	6.67	1	1	2	-
4	Gravitation and	2	6.67	1	2	1	-
	Gravity						
5	Electrostatics	3	10	2	1	4	-
6	Current electricity	4	13.33	3	2	4	-
7	Effect of Current	2	6.67	2	1	1	-
8	Electromagnetism	4	13.33	3	1	6	-
9	Electronics and Semiconductor	3	10	2	1	2	-
	TOTAL	30 ∑b	100%				

14. TABLE OF SPECIFICATIONS FOR THEORY

K=Knowledge, C= Comprehension, A= Application, HA= Higher than application (analysis, synthesis, Evaluation)

3. Course Title: Applied Chemistry

- 1. **Course Title**: Applied Chemistry
- 2. <u>Course Code</u>: BS-105
- 3. <u>Semester:</u> First(1st)
- 4. <u>Total credit</u>: 3
- 5. <u>Rationale of Course:</u> Modern development of industries requires more understanding of the chemical substances used for engineering and industrial purposes. This part of Chemistry explains various fundamental aspects of chemical substances which will develop basic understanding and skill of engineering students.
- 6. <u>Course Outcome:</u> After completion of the course, students will be able to
 - CO-1: Estimate the amount of reactant and product using balanced chemical equation.
 - CO-2: Prepare a solution of desired strength.
 - CO-3: Understand quantum mechanical model of an atom and concept of chemical bonding.
 - CO-4: Understand the concept of pH and apply Le-Chateliar's principle to set the condition for high yield of industrially important products.
 - CO-5: Understand the importance of catalyst in industry.
 - CO-6: Utilize electrolysis in industrial field and understand construction of various electrochemical cells.
 - CO-7: Solve the engineering problems using knowledge of engineering materials and properties.
 - CO-8: Use relevant water treatment method to meet domestic and industrial needs.

7. <u>Teaching scheme (per week)</u>:

Lecture	Tutorial	Practical
2	1	0

8. <u>Examination scheme:(in hours):</u>

	Theory (Hours)	Practical	Total		
Lecture	Tutorial	Class test	20	78	
30	15	3	50	70	

9. Examination Scheme:

Examination scheme									
The	ory	Practi	cal	Total (Theory + Practical)					
Sessional	ESE	PA	PT						
40	60	60	40	100+100=200					

Chapter	Chapter title		Type of Question	n	Total
No	r	Objective	Short	Descriptive	
1	Chemical Equation	1x1=1	2x1=2	1x3=3	6
2	Solution and Acidimetry & Alkalimetry	1x2=2	1x1=1	1x3=3	6
3	Atomic Structure and chemical bonding	1x2=2	2x1=2	2x3=6	10
4	Chemical equilibrium	1x2=2	2x1=2	1x2=2	6
5	Catalysis	1x1=1	3x1=3	-	4
6	Electrochemistry	1x2=2	2x1=2	1x4=4	8
7	Engineering materials	1x3=3	2x2=4	1x5=5	12
8	Water	1x2=2	2x1=2	1x4=4	8
		15	18	27	60

10. <u>Distribution of marks</u>:

11. <u>Detailed course content:</u>

Chapter	Title	Content	I.L.O	Duration	Marks
no.				(in hours)	
1	Chemical equation	 Mole concept and related numerical. Balancing chemical equation and stoichiometric calculations. Oxidation and reduction. Balancing redox equations by partial equation method & ion- electron method. 	Students will be able to: 1. Solve numerical problems on mole concept. 2. Balance chemical equations 3. Perform stoichiometric calculations 4. Understandredox reactions.	3	6
2	Solution and Acidimetry&al kalimetry	 Idea of solute, solvent and solution. Methods to express the concentration of solution (in terms of percentage, grams per litre, ppm, molarity, normality, molality and mole fraction) and related numerical problems. Definition of acidimetry and alkalimetry, Principle of titration, Indicator and its choice, Related numerical. 	Students will be able to: 1. Prepare a solution and calculate the strength. 3. Explain the concept of titration.	3	6
3	Atomic Structure and Chemical Bonding	 Brief idea of sub-atomic particles Dual nature of electrons, De- Broglie's hypothesis, Uncertainty principle Quantum numbers Aufbau Principle, Pauli's 	Students will be able to: 1.Understand the structure of an atom and explain the quantum numbers and its significance. 2. Write electronic configuration of different		

1ST SEMESTER

		 exclusion principle, Hund's rule of maximum multiplicity. 5. Electronic configuration of elements 6. Chemical bonding and different types of chemical bonds - ionic covalent, and co- ordinate bondingand their characteristics 7. Hydrogen bonding and related properties. 8. Metallic bonding and related properties, Conductor, semi- conductor and insulator. 	 elements. 3. Understanddifferent typeschemical bonding and its influence on properties of compounds. 4. Explain metallic bonding and identify conductors, insulators and semi-conductors. 	5	10
4	Chemical equilibrium	 Characteristics of equilibrium and law of mass action Le-Chateliar's principle and its application Ionic equilibrium and the concept of pH, numerical problems 	 Students will be able to: 1.Derive equilibrium constant. 2. Apply Le-Chateliar's principle 3.Explain the concept of pH and itsimportance. 	3	6
5	Catalysis	 Catalyst and Catalysis Homogeneous and heterogeneous catalysis Application of catalyst in industry. Enzyme and its use in various chemical process. 	Students will be able to : 1.Explain the function of a catalyst and its application in industrial process. 2. Understand the importance of enzyme.	2	4
6	Electro chemistry	 Definition of terms: Electrolytes and non-electrolytes with example. Faraday's laws of electrolysis and simple numerical problems. Industrial application of electrolysis – Electro plating, Electrometallurgy and Electrolytic refining. Electro-chemical cells Primary cell - Dry cell, Secondary cell –Lead storage battery. Corrosion of metals, types of corrosion. Rusting of iron and its mechanism. Control of corrosion. 	 Students will be able to 1. Apply Faraday's laws of electrolysis. 2. Understand application of electrolysis in industry. 3. Prepare cells. 3. understand corrosion and suggest protective measure to control corrosion. 	4	8
7	Engineering materials	Occurrence of metals in nature. Introduction of term- Minerals, ores, gangue, flux, slag. Brief account of general principles of metallurgy. Extraction of - iron from	Students will be able to 1. Explain general principles of metallurgy. 2. Explain the manufacturing processes of iron and	6	12

1ST SEMESTER

		haematite ore using blast	aluminum.		
		furnace, aluminium from	3. Describe the		
		bauxite along with reactions.	composition, properties		
		Alloys – definition, purposes of	and uses of Alloys.		
		alloying, ferrous alloys and non-	4. Explain the		
		ferrous with suitable examples,	manufacturing process of		
		properties and applications.	cement and glass		
		Portland cement- Raw materials,	5. Explain the setting and		
		manufacture of Portland cement,	hardening process of		
		setting and hardening of	cement.		
		Portland cement.	6. Understand polymer and		
		Glass – Composition,	its classification and also		
		classification and uses. Outline	use of polymer in everyday		
		of manufacturing process of	life.		
		glass.	7. Understand the versatility		
		Polymers – monomer,	of nano materials in various		
		classification of polymer,	fields.		
		Application of important			
		polymers, rubber and			
		vulcanization of rubber.			
		Nano materials and Nano			
		technology (Introductory idea			
		only)			
		1.Soft and hard water, salts	Students will be able to		
		causing water hardness, unit of	1.Explain the causes of		
		hardness and simple numerical	Hardness.		
		on water hardness.	2. Design set up to		
		2. Water softening techniques –	Remove hardness of water.		
		soda lime process, zeolite	3. Explain the treatment		
		process and ion exchange	processes for boiler feed		
		process.	water and Municipal		
0	Water	3. Municipal water treatment (in	water.	1	0
0	w alei	brief only) – sedimentation,	4. Estimate hardness of	4	0
		coagulation, filtration,	water.		
		sterilization			
		4. Problems caused by the use of			
		hard water in boiler (scale and			
		sludge, foaming and priming,			
		corrosion etc), 5. Quantitative			
		measurement of water hardness			
		by ETDA method			

Suggested Books:

- 1. Text Book of Chemistry for class XI and XII, NCERT, Delhi.
- 2. Engineering Chemistry, Jain & Jain, Dhanpat Rai Publications
- 3. **Chemistry for Polytechnic** (Volume I and Volume II), Jyotishmoy Borah & Raju Ojah, Kalyani Publishers
- 4. Applied Chemistry (Volume I and Volume II), Dr. Raman Rani Mittal, S. K. Kataria & Sons.

Course Title: Communication Skills in English

Course Title	Communication Skills in English
Course Code	HS - 101
Number of Credits	2
Prerequisites	Class X
Number of Credits	2 (L:2, T:0. P:0)

RATIONALE

Efficient and effective communication skill is the foundation of success in any professional and academic arena. In this context, English language skills have become indispensible in every profession in general and careers of especially engineering and polytechnic professions in particular with most of the service manuals, installation and commissioning manuals of various equipments are in English not to forget the everyday use of the English language in communicating with peers, seniors and clients. English competency plays a major part in creating employable opportunities for diploma engineers in the global level too. Fluency in English adds value to personality making. Written and spoken competency in English is obligatory for technical professionals. This course is hence designed to help the student achieve both written and spoken proficiency in the English language.

COURSE OBJECTIVES

This course aims at helping the students to attain the following industry identified competencies through various teaching learning experiences:

- 1. Communicate effectively in English both in spoken and written form.
- 2. Comprehend given passages and extract the main idea

COURSE OUTCOMES

On completion of the course student will be able to

Unit 1 CDAMMAD AND VOCADULADV

- 1. CO1= Communicate effectively in General Indian English (GIE) applying varied English vocabulary and constructing grammatically correct English sentences in everyday situations confidently
- 2. CO2= Use proper format to write Job Application and E-mail
- 3. CO3 = Demonstrate proper etiquette and confidence while facing an interview

COURSE CONTENT

Chapter	Chapter Title	Chapter Content	Intended Learning	Duration in
No.			Outcome	Hours
1	Parts of Speech	Recognition and Review of Parts	1.The student will be	2
		of Speech with main focus on	able to explain the	
		Prepositions of Time and Place	different parts of	
		-	speech	
			2. The student will be	
			able to explain	
			Prepositions of Time	
			and Place	

1ST SEMESTER

2	Subject Verb	Rules that guide the agreement	1. The student will be	3
	Agreement	of the subject to its verb	able to explain Subject	
			Verb Agreement	
3	Transformation of	Interchange of Assertive,	1. The student will be	3
	Sentences	Negative, Interrogative,	able to interchange	
		Exclamatory Sentences; Voice	Affirmative and	
		Change	Negative Sentences,	
			Assertive and	
			Interrogative	
			Sentences, Assertive	
			and Exclamatory	
			Sentences	
			2. The student will be	
			able to interchange	
			Active and Passive	
			Voice	
4	Narration	Direct and Indirect Speech:	1. The student will be	3
		Assertive, Interrogative and	able to exhange from	
		Exclamatory Sentences	Direct to Indirect	
			Speech and vice versa	
5	Vocabulary	Vocabulary of Commonly Used	1. The student will be	3
		Words: Derivatives (Noun,	able to explain the	
		Verb, Adjective), Affixation,	Derivatives	
		One-Word Substitution,	2. The student will be	
			able to relate Prefixes	
			and Suffixes	
			3. The student will be	
			able to use One-Word	
			Substitution	
6	Punctuation	Use of Comma, Semi-Colon,	1. The student will be	2
		Colon, Apostrophe, Exclamation	able to explain the use	
		Mark, Question Mark, Quotation	of Punctuation Marks	
		Mark	in different situations	
			and sentences	
7	Dressing for the	Dress code, the Business	1. The student will be	3
	Interview and	Etiquette, Positive and Negative	able to face an	
	Interview Skills	Body Language, the Perfect	interview confidently	
		Handshake, Handling an		
		Awkward Situation in an		
		Interview		

UNIT-2 READING COMPREHENSION										
Chapter	Chapter Title	Chapter Content	Intended Learning	Duration in						
No.			Outcome	Hours						
8	Reading Comprehension	Comprehension of unseen passages	1.It will develop the comprehensive skill and the ability to reproduce grammatically and semantically correct English sentences	2						

UNIT 3 P	UNIT 3 PROFESSIONAL WRITING										
Chapter	Chapter Title	Chapter Content	Intended Learning	Duration							
No.	_	_	Outcome	in Hours							
9	Paragraph Writing	Paragraph Writing on everyday topics using Transition Words	1. The student will be able to organize meaningful sentences into a paragraph	2							
10	Letter Writing – Job Application	Format of a Formal Letter: Job Application, Formats of Resume and CV, Difference between Resume, CV and Bio-data	1. The student will be able to use proper formats to write Job Application, Cover Letter, Resume and CV	4							
11	E-mail Writing	Steps to write the perfect E- mail, Difference between Formal and Informal E-mail, Request through an E-mail, Writing an Apology, Complaint and seeking help and information in an E-mail, Informing about a file attached in an E-mail	1. The student will be able to use proper format to write a formal E-mail	3							

Distribution of marks:

Chapter	Chapter Title	,			
No.		Objective	Short	Descriptive	Total
1.	Parts of Speech	1x2=2			2
2.	Subject Verb Agreement	1x1=1	2x4=8		9
3.	Transformation of	1x1	2x4=8		9
	Sentences				
4.	Narration	1x1=1	2x2=4		5
5.	Vocabulary	1x1=1	2x2=4		5
6.	Punctuation	1x1=1	2x1=2		3
7.	Dressing for the	1x1=1	2x1=2		3
	Interview and Interview				
	Skills				
8.	Reading Comprehension	1x1=1		1x5=5	6
9.	Paragraph Writing	1x1=1		1x5=5	6
10.	Letter Writing – Job	1x1=1		1x5=5	6
	Application				
11.	E-mail Writing	1x1=1		1x5=5	6
Total					60

Prescribed Book:

A Handbook on Communication Skills in English and Language Lab for Polytechnics by Dr Papori Rani Barooah

4. Course Title: Engineering Graphics

Course Code	ES 101	ES 101							
Category	Engineer	Engineering Science Course							
Course Title	Engineer	Engineering Graphics							
Scheme and Credits	L	Τ	Р	Credits	Semester-I				
	0	0	3.0	1.5					
Pre-requisites (if any)	None			·	•				

LEARNING OBJECTIVES:

LO1	Demonstrate the uses of drawing equipments.
LO2	Illustrate the concepts of Engg drawing while drawing of lines, letter, curve and scales
LO3	Build two dimensional drawing of lines, planes and solids
1.04	Utilize the concept of orthographic and isometric projections in drawing of simple
L04	objects.
LO5	Construct free hand sketches of screw threads, fastenings and rivets.
1.05	Demonstrate the use of tools and techniques to sketch simple drawing using CAD
105	software.

COURSE OUTCOMES:

On successful completion students will be able to:

CO1	Understand the language of graphics which is used to express ideas, convey instructions
	while carrying out engineering jobs.
CO2	Develop drafting and sketching skills, to know the applications of drawing equipments,
02	and get familiarize with Indian Standards related to engineering drawings.
CO3	Develop skills to visualize actual object or a part of it, on the basis of drawings
CO4	Develop skills to translate ideas into sketches and to draw and read various engineering
004	curves, projections and dimensioning styles.
CO5	Understand the basic commands and develop basic skills related to computer aided
005	drafting, of how to draw, modify, and edit basic shapes using AUTOCAD.

DETAILED SYLLABUS:

Units	Detailed Contents	Contact Hour		
	Uses of drawing equipment-set squares, T square, drafter etc.			
	Layout of drawing sheets-size, margin boarder line etc. Types of			
	lines-outline, margin line etc.			
	Dimensioning –notation, dimensioning terms, dimensioning			
	systems. Lettering-Single stroke (alphabets and numerals).			
LINUT I	Geometrical Constructions- bisecting a line, perpendicular line,	0		
UNIT-I	parallel line, dividing a line, drawing angles of 30°, 60°, 45°,	7		
	90°. Construction of a circle, tangent to a circle, square,			
	rectangle, pentagon and hexagon, in-circle and circum-circle.			
	Curves- general methods of construction of Ellipse, parabola,			
	hyperbola, tangents and normal to conics. Scales-representative			
	fraction, diagonal and plain scale.			
	Concepts of quadrant and planes.			
	Projections of points-in four quadrants.			
	Projections of lines- Straight line, lines parallel to one or both			
	the planes, line perpendicular to one of the planes, lines inclined	12		
UNIT-II	to both the plane.			
	Projections of simple geometrical planes-types of plane,			
	projections of plane in different simple positions.			
	Types of solids, projection solids (axis perpendicular or			
	horizontal to one of the plane)			
	Orthographic Projections-Principle and method of projections,			
	concepts of angle of projections, Planes and projections.			
UNIT III	First and third angle projections of different simple objects use	0		
0111-111	in engineering practices.	7		
	Isometric projection- isometric scale, isometric views, Isometric			
	drawing of different simple objects.			
	Free hand sketches-screw treads (V-threads, square thread).			
UNIT-IV	Nuts and bolts (Hexagonal and square)	6		
	Rivets- Types of rivet head and different types riveted joints.			
	Introduction to CAD tools, menu system, toolbars, drawing area			
	and dialog boxes, methods of zooming in and out, select and			
	erase entities, applying annotations to drawings, applying			
UNIT-V	dimensions to drawings, setting up and use of layers, drawing	9		
	circle, parabola & polygons, drawing of cube, prism, pyramid,			
	cylinder, cone and sphere in AutoCAD, CATIA v5 or			
	Solidworks 2021 or newer versions.			
Total Contac	t Hours	45		

1ST SEMESTER

Table of Specification for Engineering Graphics																
S1	Contact	Units	0	bject	tive	Short Answer			Long Answers Type				Total			
No	Hours					Туре									Marks	
			R	U	AP	R	U	AP	AN	R	U	AP	AN	E	С	
1	9	Unit I	0	0	0	0	0	2	0	0	0	5	0	0	0	7
2	12	Unit II	0	0	0	0	0	2	0	0	0	8	0	0	0	10
3	9	Unit III	0	0	0	0	0	2	0	0	0	8	0	0	0	10
4	6	Unit IV	0	0	0	0	0	2	0	0	0	4	0	0	0	6
5	9	Unit V	0	0	0	0	0	2	0	0	0	5	0	0	0	7
Total	45															
Total	Marks		0	0	0	0	0	10	0	0	0	30	0	0	0	40

NB:R:Remember, U:Understand, AP: Apply, AN: Analyze, E: Evaluate, C: Create

	Annexure-I (Engineering Graphics)										
S1	Units	Time	Percentage							Total	
No.		Allotted	Weightage	R	U	AP	AN	Е	C	Marks	
		(Hrs)									
1	Unit I	9	17.5 %	0	0	7	0	0	0	7	
2	Unit II	12	25.0 %	0	0	10	0	0	0	10	
3	Unit III	9	25.0%	0	0	10	0	0	0	10	
4	Unit IV	6	15.0 %	0	0	6	0	0	0	6	
5	Unit V	9	17.5 %	0	0	7	0	0	0	7	
Total Marks								40			

NB:R: Remember, U: Understand, AP: Apply, AN: Analyze, E: Evaluate, C: Create

<u>REFERENCE BOOK LIST</u>:

Sl No.	Book Name	Author Name	Publishing House, Volume, ISBN
1	Engineering Graphics	N. D. Bhatt	Charotar Publishing House, 50 th edition, 2011, ISBN 978-93-80358- 17-8
2	Engineering Graphics	V Lakshminarayanan	Jain Brothers, 2007, ISBN 978- 8183600750
3	Engineering Graphics	A.M. Chandra and S. Chandra	Narosa publishers, 3 rd edition, 2010, ISBN 978-8184870664
4	Engineering Graphics	P.J. Shah	S. Chand & Company, 2012, ISBN 978-8121932356
5	Text Book of Engineering Graphics	P.H. Jain	Soham Publishers, 2018, ISBN 978- 8192659862

33

5. Course Title: Engineering Workshop Practice

Course code	ES-103
Course title	ENGINEERING WORKSHOP PRACTICE
Semester	FIRST SEMESTER
Number of credit	3 (L:T:P=0:0:6)
Total contact hours	90 Hours
Pre requisite	Basic science, mathematics, engineering drawing.

RATIONALE OF THE SUBJECT:

Workshop practice is indeed the backbone of the real industrial environment. It provides an invaluable opportunity for students to develop and enhance their technical hand skills, which are essential for success in various engineering industries and workshops. Here's why workshop practice is so crucial:

- 1. **Technical Hand Skills Development**: Workshop practice allows students to gain hands-on experience with various hand tools and equipment used in manufacturing. This practical experience helps them develop the necessary skills required to excel in their chosen field.
- 2. **Problem Solving Skills**: Engaging in workshop practices exposes students to real-life scenarios and challenges they may encounter in industrial settings. By working through these problems, students learn how to troubleshoot and find solutions, which are essential skills in any engineering profession.
- 3. **Understanding of Industrial Jobs**: Workshop experiences provide students with insight into the complexity of industrial jobs, including the time and skill requirements involved. This understanding prepares them for the realities of working in the industry and helps them make informed career decisions.
- 4. **Foundation for Further Learning**: Workshop curriculum lays the groundwork for learning more advanced manufacturing processes and production technology courses in subsequent semesters. The hands-on experiences gained in the workshop serve as a solid foundation for building upon as students progress in their studies.
- 5. **Practice Makes Perfect**: As the saying goes, "practice makes perfect." Regular practice in the workshop allows students to refine their skills and become proficient in their craft. It's through hands-on experience that students truly master the techniques and processes taught in the classroom.
- 6. Attitude of Enquiry: Encouraging students to approach workshop practices with an attitude of enquiry fosters curiosity and a deeper understanding of the why and how behind various instructions and practices. This attitude encourages critical thinking and ensures that students grasp the underlying principles behind the techniques they're learning.

In summary, workshop practice is an essential component of engineering education, providing students with the practical skills, problem-solving abilities, and foundational knowledge they

need to succeed in the industrial environment. Encouraging students to approach workshop experiences with curiosity and a willingness to learn ensures that they get the most out of their hands-on training.

LEARNING OBJECTIVES:

At the end of the course the students will be able to. -

- LO1: Tell the meanings of different terminology and manufacturing process used in workshop.
- LO2: Choose different hand tools, machine tools, equipment and recall their functions and applications.
- LO3: Demonstrate different skills practiced in a work shop.
- LO4: Illustrate manufacturing methods/ procedure that are specific to a particular shop.
- LO5: Explain the methods of setting up a job and operating a equipment /machine.
- LO6: Demonstrate the practice of safety, hygiene, precaution and ethics in a workshop.
- LO6: Choose the methods of manufacturing a job.
- LO7: Build a model by complying with a standard working procedure.
- LO8: Inspect defects in a build model.

COURSE OUTCOMES:

At the end of the course the students will be able to. -

- CO1: Show equipment parts, manufacturing processes / technology practiced in workshop.
- CO2: Choose different hand tools, machine tools, equipment and demonstrate their applications and operating procedure in shop practices.
- CO3: Illustrate different skill, methods, techniques, job set up, machine set up practiced in a workshop.
- CO4: Build a model as per working procedure adhering to safety, precautions and safety.

CO5: Inspect visually different defects that emerge in the build model.

GUIDANCE FOR THE SHOP INSTRUCTOR:

- To prepare a digital copy of workshop journal / report selecting the most relevant topics from the available contents of a shop leaving blank pages for hand writing of home assignment and class assignment.
- To provide standard working procedure, design / drawings required for making different jobs as mentioned in the syllabus.
- To demonstrate all tools, equipment and operating procedures required for workshop practices.
- To demonstrate practical skill and techniques necessary to practice in the shop.

35

- To exercise internal assessment and end semester evaluation of students based on course outcome and on individual performance.
- To adhere to the safety, precaution and ethics necessary to be followed in the shop.

ASSESSMENT CRITERIA:

(a) INTERNAL ASSESSMENT :

Sl No.	Internal Assessment criteria	Marks = 60
1	Identification, demonstration of manufacturing process,	2 X 6 = 12
	tools, equipments, parts of tools and equipment etc.	
2	Demonstration of skill, methods, job setting, machine	4 X 6 = 24
	setting, working and operating procedure of tools and	
	equipments to build a model.	
3	Demonstration of defect if any on models, practices of	2 X 6 = 12
	safety, precautions and ethics in shop.	
4	Adherence to working procedure and report submission	2 X 6 = 12
Total Ma	rks (10 marks allotted for each shop)	10 X 6 = 60

(b) END SEMESTER EVALUATION:

Sl No.	End Semester Evaluation criteria for evaluation of	Marks = 40
	individual performance	
1	Identification, demonstration of manufacturing process, tools, equipments, parts of tools and equipment etc.	5
2	Demonstration of skill, methods, job setting, machine setting, working and operating procedure of tools and equipments to build a model.	10
3	Demonstration of defect if any on models, practice of safety, precautions and ethics in shop.	5
4	Workshop Viva	20
Total Ma	arks	40

WORKSHOP MODULES:

Institute may select any one module from the suggest modules for Engineering Workshop

Practice course.

MODULES	SHOP NAMES	MODULES	SHOP NAMES
MODULE – 1	1. Machine Shop	MODULE – 2	1. Carpentry Shop
	2. Fitting Shop		2. Electrical Shop
	3. Electrical Shop		3. Welding Shop
	4. Moulding Shop		4. Machine Shop
	5. Black Smithy Shop		5. Fitting Shop
	6. Welding shop		6. Black Smithy Shop
	·		·

36

MODULE – 3	1. Carpentry Shop	MODULE – 4	1. Carpentry Shop
	2. Sheet Metal Shop		2. R.C.C Shop
	3. Pattern making Shop		3. Painting Shop
	4. Moulding Shop		4. Electrical Shop
	5. Fitting Shop		5. Welding Shop
	6. Turning Shop		6. Plumbing Shop
MODULE – 5	1. Welding Shop	MODULE – 6	ANY SIX SHOP FROM
	2. Machine Shop		THE SUGGESTED
	3. Black Smithy Shop		LIST OF
	4. Moulding Shop		WORKSHOPS.
	5. 3D Printing Shop	1	
	6. Pattern Making Shop		

WORKSHOP DETAILS, COURSE CONTENTS AND PRACTICES:

1. CARPENTRY SHOP

LEARNING OBJECTIVE:

The students will be able to

LO1: Choose different tools, equipment and manufacturing process as required in the shop.

LO2: Demonstrate various skill and techniques, safety, precaution and ethics desired in the fitting shop.

LO3: Build different jobs as per drawing and estimation and adhering to standard working procedure and safety practices.

CONTENTS

CONTACT HOURS : 15 Hrs

Basic materials used in carpentry shop (timber & plywood), Auxiliary materials, Classification of wood and timber, Seasoning and its methods, Demonstration of marking and measuring tools, cutting tools, planning tools, boring tools, striking tools, holding tools, Carpentry joints (lap joints-(half lap, mitred half lap, cross lap, dovetail crossed lap), mortise and tenon joints, dovetail joints, bridle joint etc..

- * Demonstration of different wood working processes, like plaining, marking, chiseling, grooving, turning of wood etc.
- * Demonstration of operating plaining tool for plaining a wooden member to required sizes as per the drawings provided.
- * Demonstration of nail sizes and nailing practices.
- * Demonstration of different tools and equipments along with their usages.
- * Safety, precaution and ethics required in this shop

Job practices:

- 1. Lap joints- half lap, mitred half lap, cross lap
- 2. Mortise and tenon joints
- 3. Dovetail joints and bridle joints.
- 4. Craft a wooden sign board frame with appropriate joints and nail a plain G.I sheet. (Sizes of frame, wooden member, gauge size of plain sheet, nail size as recommended by shop instructor)

2. FITTING SHOP

LEARNING OBJECTIVE:

The students will be able to

LO1: Choose different tools, equipment and manufacturing process as required in the shop. LO2: Demonstrate various skill and techniques, safety, precaution and ethics desired in the fitting shop.

LO3: Build different jobs as per drawing and estimation and adhering to standard working procedure and safety practices.

CONTENTS

CONTACT HOURS : 15 Hrs

Fitting tools – (i) Marking and measuring tools (surface plate, try square, angle plate, scriber, universal scribing block, odd leg caliper, dividers, calipers, dot punch, vernier caliper) (ii)Holding and supporting tools (bench vice, V-block, C-clamp) (iii) Cutting, filing and scrapping tools (iv) Striking tools (v) Drilling, dieing, reaming and tapping tools (vi) Miscellaneous tools (ball peen hammer, screw driver, spanner). Types of file – hand file (flat file, square file, half round file, round file) Art of filing, filing methods. Fitting operations- (i) Chipping (ii) Filing (iii)Scrapping (iv) Grinding (v) sawing (vi) Marking (vii) Drilling (viii) Reaming (ix) Tapping (x) Dieing. Power tools-bench drilling machine, grinding machine etc..

- * Demonstration of fitting tools.
- * Demonstration of different types of files, art of filing and methods of filing.
- * Demonstration of different fitting operations.
- * Demonstration of power tools used in fitting shop.
- * Safety, precaution and ethics required in this shop.

Job practices:

- 1. Make dovetail fit from a given mild steel pieces.
- 2. Make square fit from a given mild steel pieces.
- 3. Make V-fit from a given mild steel pieces.
- 4. Make semicircular fit from a given mild steel pieces.

3. WELDING SHOP

LEARNING OBJECTIVE:

The students will be able to

LO1: Choose different tools, equipment and manufacturing process as required in the shop. LO2: Demonstrate various skill and techniques, safety, precaution and ethics desired in the welding shop.

LO3: Build different jobs as per drawing and estimation and adhering to standard working procedure and safety practices.

CONTENTS

CONTACT HOURS : 15 Hrs

Various welding process - Arc welding, Gas Welding, TIG welding, MIG welding, Demonstration of arc welding equipments and their functions, Types of electrodes, Electrode size, Specifications of electrode, Edge preparation, Different welding positions. Types of welding joints – Lap joints, Butt joints, T-joints, Corner joint, Edge joints, Plug joints. Gas welding equipments and their functions, Types of gas flames, Gas welding techniques, Flux, Filler,TIG welding, MIG welding, Spot welding, Seam welding, Thermit welding, Resistance welding. Welding defects. Work holding devices, marking and measuring tools, Essential welding tools and accessories.

- * Demonstration of arc welding, gas welding, TIG and MIG welding equipments and parts.
- * Demonstration of the techniques of arc and gas welding in different joints.
- * Demonstration of different types of flames, electrode / filler material used in arc and gas welding.
- * Demonstration of different types of tools and equipment used in this shop.

* Safety, precaution and ethics required in this shop.

Job practices:

- 1. Preparation of lap joint using a given mild steel plate by arc or gas welding.
- 2. Preparation of butt joint using a given mild steel plate by arc or gas welding.
- 3. Preparation of T- joint using a given mild steel plate by arc or gas welding.
- 4. Preparation of corner joint using a given mild steel plate by arc or gas welding.

4. MACHINE SHOP

LEARNING OBJECTIVE:

The students will be able to

LO1: Choose different tools, equipment and manufacturing process as required in the shop.

LO2: Demonstrate various skill and techniques, safety, precaution and ethics desired in the machine shop.

LO3: Build different jobs as per drawing and estimation and adhering to standard working procedure and safety practices.

CONTENTS

CONTACT HOURS : 15 Hrs

Lathe machine-Types of lathe machine, Parts of lathe machine, specification of lathe, Various operation performed on lathe machine- facing, rough turning, shouldering, radius turning, thread cutting, chamfering, knurling etc., Different methods of taper turning, Shaper machine-Types of shaper, Parts of shaper, Specification of shaper, Quick return mechanism, Feed mechanism, Shaper operations-horizontal flat surface, vertical surface, angular surface, cutting slots and key ways, machining splines or cutting gears, Drilling machine- Types of drilling machine, Parts of drilling machine, Specification of drilling machine, Operations on a drilling machine- drilling, boring, counter boring, counter sinking, reaming, tapping, spot facing, Drill nomenclature, Milling machine-Types of milling machine, size and specifications, Parts of milling machine, Milling methods-up milling & down milling, Milling operations, Grinding machine- Types of grinding machine, grinding wheels, dressing and truing, grinding methods, selection of grinding wheels.

*Demonstration of parts of Lathe, Shaper, Drilling, Milling and Grinding machines, Demonstration of machine set-up of Lathe, Shaper, Drilling, Milling and Grinding machines,

*Demonstration of various machining operations in Lathe, Shaper, Drilling, Milling and Grinding machines. *Demonstration of different cutting tools, work holding devices, measuring and marking tools, attachments, jigs and fixture etc of Lathe, Shaper, Drilling, Milling and Grinding machines. * Safety, precaution and ethics required in this shop.

Job practices:

- 1. Performing operations of facing, plain turning, step turning, taper turning, chamfering, thread cutting, knurling and drilling in centre lathe on a given cylindrical work-piece.
- 2. Machining of V-Groove and Square Groove on a given square block in a shaper machine.
- 3. To perform operations of drilling, reaming, boring, counter boring, counter sinking and tapping on a given cylindrical work-piece.
- 4. Form milling of spur gear teeth on a circular blank in a milling machine.
- 5. To grind a single point cutting tool as per given specifications.

5. PATTERN MAKING SHOP

LEARNING OBJECTIVE:

The students will be able to

LO1: Choose different tools, equipment and manufacturing process as required in the shop. LO2: Demonstrate various skill and techniques, safety, precaution and ethics desired in the

pattern making shop.

LO3: Build different jobs as per drawing and estimation and adhering to standard working procedure and safety practices.

CONTENTS

CONTACT HOURS : 15 Hrs

Pattern materials, Types of pattern, Pattern making allowance- shrinkage allowance, draft allowance or taper allowance, machining allowance, distortion or camber allowance, rapping allowances or shaking allowance, Core box, Types of core boxes, Colour coding for pattern and core boxes.

Wooden pattern and core boxes making tools- Measuring and layout tools, sawing tools, planning tools, boring tools, clamping tools, miscellaneous tools- screw driver, hammers, chisel, rasp, file, cornering tool, brad pusher, bradawl etc., Wood pattern and core box making machines- wood turning lathe, abrasive disc machine, abrasive belt machine, circular saw, jig or scroll saw, jointer, drill press, grinder, wood trimmer, wood shaper, wood planer, tennoner, mortise

- * Demonstration of models of various types of pattern.
- * Demonstration of wooden pattern and core box making tools
- * Demonstration of wood pattern and core box making machines.
- * Demonstration of wooden pattern making on a lathe machine.

* Safety, precaution and ethics required in this shop.

Job practices:

- 1. Make a single piece pattern (two step cone pulley) on wooden material keeping necessary allowances. (Job specification as given by shop instructor)
- 2. Make a two piece pattern (dumb bell) on wooden material keeping necessary allowances.(Job specification as given by shop instructor)
- 3. Make a wooden pattern of solid flange (single piece pattern) keeping necessary allowances. (Job specification as given by shop instructor)
- 4. Make a wooden pattern of 6 toothed wooden gear patterns for casting keeping necessary allowances. (Job specification as given by shop instructor)
- 5. Make a wooden multi-piece pattern. (Job specification as given by shop instructor)

6. MOULDING SHOP

LEARNING OBJECTIVE:

The students will be able to

LO1: Choose different tools, equipment and manufacturing process as required in the shop. LO2: Demonstrate various skill and techniques, safety, precaution and ethics desired in the

moulding shop.

LO3: Build different jobs as per drawing and estimation and adhering to standard working procedure and safety practices.

CONTENTS

CONTACT HOURS : 15 Hrs

Types of moulds, Moulding process- bench moulding, floor moulding, pit moulding, machine moulding, Types of sand moulding- green sand moulds, dry sand moulds, skin-dried moulds, loam moulds, metal moulds, Moulding boxes- cope, drag, snap flask, box flask, tapered slip flask, Moulding tools and equipments, Moulding sands, Types of moulding sand, Grain shapeand size of sand, Sand additives, Properties of moulding sand, Sand preparation, Sand testing,

Cores and core making- core sand preparation, core moulding, core baking, core finishing, Riser and Runner system, Special moulding process- cement sand moulding, shell moulding, plaster moulding,

- * Demonstration of moulding tools and equipments.
- * Demonstration of different moulding process.
- * Demonstration of different types of sand moulding.
- * Demonstration of special moulding process.
- * Safety, precaution and ethics required in this shop.

Job practices:

- 1. Prepare green sand moulds ready for pouring using two moulding boxes (hand cut moulds).
- 2. Prepare green sand moulds ready for pouring using single piece pattern (single step pulley).
- 3. Prepare green sand moulds ready for pouring using a split pattern (dumb bell).
- 4. Prepare one casting (aluminum/ cast iron / wax material) using already prepared moulds.

7. PLUMBING SHOP

LEARNING OBJECTIVE:

The students will be able to

LO1: Choose different tools, equipment and manufacturing process as required in the shop.

LO2: Demonstrate various skill and techniques, safety, precaution and ethics desired in the plumbing shop.

LO3: Build different jobs as per drawing and estimation and adhering to standard working procedure and safety practices.

CONTACT HOURS : 15 Hrs

Pipes and its types and materials, Pipe joints, Types of pipe joints – hydraulic pipe joint, flange joint, union joint, spigot and socket joint, expansion joint, screw pipe joint, glued pipe joint, Screw threads-internal and external, Tools- clamping tools (pipe vice), pipe wrenches, pipe cutter, measuring and marking tools, cutting tools, threading tools (taps, die and diestock), Pipe fittings-nipple, bends, elbows, reducer elbows, socket, tee, reducer tee, crosses, male and female plug, coupler, reduser coupler, Valves and meters- water tap, water cock, glove valve, gate valve, ball valve, non-return valve, foot valve

- * Demonstration of different types of pipes and pipe joints.
- * Demonstration of different types of tools- clamping, measuring and marking, cutting and threading
- * Demonstration of different types of pipe fittings.
- * Demonstration of different types of valves and meters.

* Safety, precaution and ethics required in this shop.

Job practices:

1. To cut the threads at the end of a given PVC pipe by using a pipe die and connect two different diameter PVC/ GI pipe with pipe fittings like reducer, valves, bends union joint, socket and tap.

- 2. Prepare line diagram and perform pipe line connections from water tank to wash basin.
- 3. Prepare line diagram and perform pipe line connections from water tank to washing machine.
- 4. Prepare a line diagram and perform pipe line connection from water tank to heater and shower.

8. SHEET METAL SHOP

LEARNING OBJECTIVE:

The students will be able to

LO1: Choose different tools, equipment and manufacturing process as required in the shop.

LO2: Demonstrate various skill and techniques, safety, precaution and ethics desired in the sheet metal shop.

LO3: Build different jobs as per drawing and estimation and adhering to standard working procedure and safety practices.

CONTENTS

CONTACT HOURS : 15 Hrs

Metals used in sheet metal work- black iron sheet, G.I. sheet, stainless steel, tin, aluminum, copper, Sheet metal tools- hand shear or snips (straight, universal and curved hand shear), Hammers - (smoothing, stretching, creasing, hollowing, riveting, planishing, soft hammer or mallets), Stakes-(beak horn, funnel, half moon, round button, bick iron, hatchet, creasing with horn, needle case, candle mold, blow horn conductor, double seaming), stake holder, Cutting tools- files, chisel, scrapers, hacksaws, Measuring tools – folding rule, circumference rule, steel rule, Vernier caliper, micrometer, thickness gauge, Miscellaneous hand tools- steel square, straight edge, divider, scriber, trammel points, soldering iron, pliers, groover, hand seamer,Types of - edges, seam, notches, sheet metal joints, Sheet metal operations, sheet metal allowance, Layout a pattern, riveting in sheet metal. Fastening methods – Riveting, soldering, brazing, welding, Machine used- shearing, bending, folding, grooving, peining machine, beading, swaging, burring, double seaming machine.

- * Demonstration of different sheet metal tools, hammers, stakes, cutting tools, measuring tools, miscellaneous tools.
- * Demonstration of edges, seam, notches, sheet metal joints.
- * Demonstration of important sheet metal operations and method of laying out a pattern
- * Demonstration of different types machines used in sheet metal shop.

* Safety, precaution and ethics required in this shop.

Job practices:

- 1. Marking out of simple developments, flaps for joints, straight lines, circles, profiles, various geometrical shapes and cutting the given 26G G.I sheets with snips.
- 2. Make various joints: Hem single hem, double hem, wired edge. Seam lap seam, grooved seam double seam, dovetail seam, flanged seam to make a cylindrical object , joint / fitting for 26 G G.I sheet water pipe line.
- 3. Make a simple square table tray with folding edge and fix handle with riveting from a 26G G.I sheet.

4. Make a conical funnel with folding edges and without handle or mug with folding edges and fixed handle from a given 26G G.I sheet. (riveting and soldering as per requirements)

9. BLACKSMITHY SHOP

LEARNING OBJECTIVE:

The students will be able to

LO1: Choose different tools, equipment and manufacturing process as required in the shop. LO2: Demonstrate various skill and techniques, safety, precaution and ethics desired in the blacksmithy shop.

LO3: Build different jobs as per drawing and estimation and adhering to standard working procedure and safety practices.

CONTENTS

CONTACT HOURS : 15 Hrs

Smithing and forging, Heating furnaces – Box or batch type furnaces, rotary hearth furnace, continuous or conveyor furnaces, induction furnaces, resistance furnace, open fire and stock fire, Forging temperature, Hand tools – anvil, swages, swage block, tongs, hammer (hand hammer, sledge hammer, power hammer), chisels (hot chisel, cold chisel, hardie set), swages, fullers, flatters, set hammer, punches, drifts, clamping vice, beak iron, Forging process- Smith dieforging (hand forging - upsetting, drawing down, setting down, bending, fullering, swaging, flattering, punching, drifting , forge welding, Power forging- hammer forging, press forging), Impression die forging- drop forging, press forging, machine forging, Hot working process and cold working process, annealing, hardening, tempering, case hardening, normalizing.

- * Demonstration of different parts of box type furnace.
- * Demonstration of different types of hand tools.
- * Demonstration of different hand forging operations.
- * Demonstration of power forging and impression die forging equipment.
- * Safety, precaution and ethics required in this shop.

Job practices:

- 1. Make a hexagonal headed bolt from a given mild steel rod. (Length and diameter as specified).
- 2. Make a cold flat chisel from a given mild steel bar. (Size, shape, length as specified by shop instructor)
- 3. Make a chain with links (03 Nos.) and chain ring (01 Nos.) from a give mild steel rod. (size of link and ring as specified by shop instructor)
- 4. To make a square prism using a given cylindrical mild steel rod.(length ,breadth and height as specified by shop instructor)
- 5. To make a S-hook from a given cylindrical rod by following hand forging operation. (Size as specified by shop instructor)

10.TURNING SHOP

LEARNING OBJECTIVE:

The students will be able to

LO1: Choose different tools, equipment and manufacturing process as required in the shop. LO2: Demonstrate various skill and techniques, safety, precaution and ethics desired in the turning shop.

LO3: Build different jobs as per drawing and estimation and adhering to standard working procedure and safety practices.

CONTENTS

CONTACT HOURS : 15 Hrs

Lathe machine-Types of lathe machine, Parts of lathe machine, specification of lathe, Various operation performed on lathe machine- facing, rough turning, shouldering, radius turning, thread cutting, chamfering, knurling etc., Different methods of taper turning. **Drilling machine-** Types of drilling machine, Parts of drilling machine, Specification of drilling machine, Operations on a drilling machine- drilling, boring, counter boring, counter sinking, reaming, tapping, spot facing, Drill nomenclature.

- * Demonstration of different parts of a lathe and drilling machine.
- * Demonstration of different types of machining operations that can be performed on a lathe and drilling machine.
- * Demonstration of different types of hand tools, attachments and accessories used in a lathe and drilling machine.
- * Demonstration of different types of cutting tools used in lathe and drilling machine.
- * Safety, precaution and ethics required in this shop.

Job practices:

- 1. To perform step, knurling, taper turning, RH thread cutting and chamfering operation on a cylindrical bar in a lathe machine as per drawing provided by the shop instructor.
- 2. Performing boring operation using a boring bar in a centre lathe and cut BSW/ Metric internal thread on a lathe machine. (Drawing as provided by the instructor)
- 3. To perform operations of drilling, reaming, boring, counter boring, counter sinking and tapping for drilling 4 nos. of hole on a given square mild steel plate.
- 4. To make a machine element (taper mandrel) on a lathe machine. (specification and drawing as provided by the shop instructor)

11.PAINTING SHOP

LEARNING OBJECTIVE:

The students will be able to

LO1: Choose different tools, equipment and manufacturing process as required in the shop.

LO2: Demonstrate various skill and techniques, safety, precaution and ethics desired in the painting shop.

LO3: Build different jobs as per drawing and estimation and adhering to standard working procedure and safety practices.

CONTENTS

CONTACT HOURS : 15 Hrs

Introduction, Composition of paints-base, vehicle or binder, colouring pigments and fillers,

solvents or thinners, drier, inert filler or extender. Types of paints- enamel, aluminium, cellulose, rubber based, bituminous, cement based, asbestos paint, casein paint, bronze paint, anti-corrosive paint. Painting process- preparation, sanding, knotting, priming, stooping, surface coat or undercoat, finished coat. Paint application techniques- Manual methods (brush, roller), spray techniques (air spray, HVLP, airless, air assisted, electrostatic - air spray, air assisted) Alternative coating methods – (electroplating, galvanizing, powder coating). Varnishes, composition of varnishes- resins, solvents, driers. Types of varnish – oil varnish, asphalt varnish, turpentine varnish, spirit varnish water varnish. Application of varnish, French polish or spirit varnish. Painting tools and equipments – water colour brush, , oil painting brush, roller, sand paper, measuring tape, hand masker and painters tape, screw driver, caulking and gun, putty knife, paint tray, stir stick, drop cloth, scrapper or wire brush, step ladder, spray gun, aircompressor, air supply hoses, paint pump, paint line, paint line whip hose, drum for mixingpaint, mixer/ stirrer. Powder coatings, Types of powder coatings- thermoplastic powder coating, thermosetting powder coatings, Powder coating process-part preparations, powder applications, curing. Painting work material - wooden work, iron and steel surface, plastered surface, concrete surface.

- * Demonstration of different composition of paints and types of paints..
- * Demonstration of painting process on wooden, iron and steel, plastered and concrete surfaces.
- * Demonstration and uses of different painting tools, equipments and different parts of spray painting equipments.
- * Demonstration of powder coating process.
- * Safety, precaution and ethics required in this shop.

Job practices:

- 1. Paint a name plate on different materials (wood, tin, acrylic) board by sketching in gothic letters, roman letters etc.
- 2. Prepare wooden surface properly of any object with wood primer, putty and paint with brush.

Or

Follow varnish and polish procedure on wooden surface (cleaning, knotting, stooping, staining preparation) to varnish and polish wooden objects.

3. Prepare wall surface (plastered or concrete) with wall putty or POP and apply lime or distemper or emulsion or enamel paint with brush and roller.

Or

Prepare iron and steel surface following standard procedure (cleaning, sanding, priming etc.) to paint iron and steel object.

4. Prepare paint as per requirement and job specification (stirring, mixing etc.), adjust air pressure and flow of paint on spray gun (size of droplet, width of spray, sprinkle thickness) and carry out coating and painting process in accordance with operatingprocedure, safety and component specification requirements.

12.RCC SHOP

LEARNING OBJECTIVE:

The students will be able to

LO1: Choose different tools, equipment and manufacturing process as required in the shop.

LO2: Demonstrate various skill and techniques, safety, precaution and ethics desired in the RCC shop.

LO3: Build different jobs as per drawing and estimation and adhering to standard working procedure and safety practices.

CONTENTS

CONTACT HOURS : 15 Hrs

Concrete making ingredients -

Cement: Field test of cement, normal consistency of cement, initial setting time, Aggregate :

(c) Fine aggregate (sand): Physical observation, checking of impurities – soft material, foreign material etc.

(d) Coarse aggregate (stone chips): Size, Physical observation for checking impurities. Making of concrete: Hand mixing of concrete for a particular proportion (weight basis), control of quantity of water, fine aggregates and coarse aggregates,

Bricks masonry work:

Brick – Field test of brick to check the suitability – colour, shape, size, weight, strength (without machine), water absorption, efflorescence, etc., Mortar: Hand mixing of mortar in given proportion (wet basis), specific time of using mortar after mixing, laying of mortar as per thickness, laying of brick – Stretcher, Header, English, Flemish bond, Knowledge of header, stretcher, closer, queen closer, king closer, beveled closer, keys and frogs.

RCC work:

Definition, Difference between Plain Cement Concrete (PCC) and Reinforced Cement Concrete (RCC), Steel reinforcement bar – mild steel, TOR steel, high yield strength deformed bar(HYSD), Cold twisted deformed bar, corrosion resistant steel bar. Thermo Mechanically Treated (TMT). Knowledge of shuttering, centering and prop, Knowledge of compaction of concrete – necessity of compaction, hand compaction, Vibration compaction. Curing of concrete and brick work – necessity, water for curing, time period of curing, curing methods – water

Immersion, spraying, surface covering, etc.,

Concreting works: Preparation for placing of concrete in RCC work, compaction of concrete. Reinforcement work – cutting of reinforcement, bending and placing of reinforcement,

introduction of stirrups (ties), function of stirrups (ties), making of stirrups (ties) – Based on shape, knowledge of hook, hook length, placing of stirrups (ties), knowledge of cover, necessity

of cover,

Tools and equipment – Trowels (brick, nyla, margin, gauging trowel), mortar making tools, spirit level, level tube, chisels, hammer, cove corner, portable circular saw, jointers (concave, convex, Vee, grapevine), floats (wooden, metal), plumb bob, mason's square, measuring tape, sand screen, pan, spade, shovel. stirrup bending bench.

- * Demonstration of field testing of cement, field test of bricks, hand
- Mixing of mortar and concrete, visual inspection of impurities.
- * Demonstration of different types of hand tools and equipment.
- * Demonstration of different types of bonds.

* Demonstration of cutting, bending and binding of stirrups.

* Safety, precaution and ethics required in this shop.

Job practices:

1. Preparation of a Portland cement paste of standard consistency and determine the initial setting time of cement as per IS 4031.

Or

Sieve analysis of coarse aggregate and fine aggregate as per IS 383 and IS 2386.

- 2. Making of mortar and concrete as per given proportion (weight basis)
- 3. Cutting and bending of 5/6 mm diameter rod to build square, rectangular, triangular and circular stirrups as per I.S standard.
- 4. Build a half brick thick wall in stretcher bond or header bond one end stopped and the other end raked baked six courses height keeping provision for chases or holes.
- 5. Bending of required numbers of square stirrups for binding of 4 Nos. primary TMT reinforcement bars with 24G black binding wire for a beam or column of specified length or height keeping the spacing between stirrups or ties not more than recommended value.

13.ELECTRICAL SHOP

LEARNING OBJECTIVE:

The students will be able to

LO1: Choose different tools, equipment and manufacturing process as required in the shop.

LO2: Demonstrate various skill and techniques, safety, precaution and ethics desired in the electrical shop.

LO3: Build different jobs as per drawing and estimation and adhering to standard working procedure and safety practices.

CONTENTS

CONTACT HOURS : 15 Hrs

Basics knowledge:

Circuit, Types of circuit (A.C circuit, D.C circuit, open circuit, closed circuit, short circuit), voltage, current, power, energy, A.C current, D.C current, cycle, frequency, single phase supply, two phase supply, three phase supply, insulators, resistances, inductance, capacitance, ohm's law, connections of cells – series connections, parallel connections, series and parallel connections. Domestic wiring:

Planning for wiring, load estimation, wattage of domestic appliances, wire selection chart, symbols. Switches – single pole one way switch, single pole two way switch, intermediate switch, push buttons switch, double pole switch, double pole iron- clad main switch, triple pole iron clad main switch. Fuse, Types of fuse – Kitkat fuse, circular fuse, cartridge fuse, H.R.C fuse, Circuit breaker – manual circuit breaker (MCB), automatic circuit breaker (ACB). Plug sockets – two pin sockets, three pin sockets, three pin plug top. Lamp holder – bayonet cap lamp holder, pendent lamp holder, batten lamp holder, angle lamp holder, Edison screw cap lamp holder, swivel lamp holder. Lamp connection – Tree connections, looping in connections, General accessories – adapters, ceiling rose (two plate ceiling rose, three plate ceiling rose),

connectors, distribution board, neutral link. Types of electrical joints – pigtail or rat tail joint, married joint, scarfed joint, tap joint (plain tap, knotted tap, duplex cross tap joint). Selection of

wiring, Types of wiring – Cleat wiring, TRS or CTS (batten) wiring, Casing or capping wiring, conduit wiring, lead sheathed wiring. Method of marking the layout for wiring – marking true vertical run, marking true horizontal runs, marking cable runs on ceiling. Method of connections in domestic installation – looping- back method, joint box method. Measuring of wire sizes. Executing PVC casing – capping wiring. Earthing procedure. Estimating the cost of house wiring. Testing of domestic installation:

Polarity test, testing polarity of socket, continuity test, earth leakage current test, insulation resistance test.

Tools and equipments – screw driver, pliers, knife, poker, nail puller or claw hammer, mallet, hacksaw, hand drill, drilling machine, wire gauge, test pen, test lamp, voltmeter, ammeter, multimeter, galvanometer, megger.

- * Demonstration of different types of circuit, insulators, resistances, capacitance, connections of cells, tools and equipment and their application.
- * Demonstration of wire laying planning, load estimation, switches, fuse, circuit breaker, sockets, lamp holder, lamp connections, types of wiring.
- * Demonstration of different methods of joining electric wires and cables, casing or capping wiring, conduit wiring.
- * Demonstration of earthing procedure, wire size measuring, different testing techniques.
- * Safety, precaution and ethics required in this shop.

Job practices:

- 1. Prepare test boards / extension boards and mount accessories like lamp holders, various switches, sockets, fuse relays, MCB etc.
- 2. Wire up PVC conduit wiring on given wooden wiring board to control one lamp from two different places.
- 3. Estimate the cost, bill of material, lay out drawing keeping provision of points for two numbers of lamp, one ceiling fan, one TV, one charging point, one extra point for minimum 15 metre length.
- 4. Practice wiring on a given wooden wiring board for godown lighting.
- 5. Prepare pipe earthing / plate earthing and measure earth resistance with earth tester / megger.

14. 3D PRINTING SHOP

LEARNING OBJECTIVE:

The students will be able to

- LO1: Choose different tools, equipment and manufacturing process as required in the shop.
- LO2: Demonstrate various skill and techniques, safety, precaution and ethics desired in the 3D printing shop.

LO3: Build different jobs as per drawing and estimation and adhering to standard working procedure and safety practices.

CONTENTS

CONTACT HOURS : 15 Hrs

Prototyping, Product life cycle, CAD design – solid modeling, surface modeling, sculpting. CAD for 3D printing – CAD data, data translation, data loss, STL format. Generic process of CAD to PRODUCT (CAD, conversion to STL, File transfer to machine, machine set up, build, remove, post process application).3D model file formats (STL, OBJ etc.), Slicing a 3D model, Slicing software, Knowledge on Brims, Skirt, Raft, support, orientation, layer height, printer speed, bridging, perimeters, infill, retraction, stringing. Types of 3D printing process – Binder jetting (BJ), direct energy deposition (LENS, LBMD), materials extrusion (FFF, FDM), materials jetting (MJ, DOD), powder bed fusion (SLS, DMLS, SLM, EBM), sheet lamination (UAM, LOM, Vat polymerization (SLA – stereolithography, DLP – Direct Light Processing). Components of 3D printer – axes, extruder, nozzle, hot end, build surface /print bed, filament, cooling device, control panel.3D printing materials – Polymers (plastics, thermo plastics, thermosetting), metals, others (ceramics, ccomposites). Printer characteristics of different 3D printing process.3D scan – laser scanning, CT scanning. Post processing process – support removal, sanding, cleaning, debarring, polishing etc. Tools and equipments – Spatula, glue stick, debarring tool / knife and cutting mat, pliers, blue tape, digital caliper, tweezers, sand paper, screw driver, hex key screwdrivers, adhesion sheet, desiccant and re-sealable bags, permanent markger, advanced 3D printing kit, paper towels, wire cutter, dremel, extra filament, dissolving kit (bucket of water and pump).

- * Demonstration of CAD design of a model for 3D printing.
- * Demonstration of different parts of 3D printer available in the shop.
- * Demonstration 3D scanning and conversion to printable 3D format.
- * Demonstration of printing of a simple job in 3D printer and performing post processing operation.

* Safety, precaution and ethics required in this shop.

Job practices:

- 1. Modeling a 3D model of a box or dice or any simple utility objects in CAD software and conversion to STL format .
- 2. Slicing of STL file and study the effect of process parameter like layer thickness, orientation and infill on build time using software.
- 3. Printing of a CAD modeled 3D object on the available 3D printer with materials as applicable to the printer and perform post processing operation.i
- 4. Modeliing of a component using 3D scanner of real life object and conversion to STL format.

15. CUTTING AND SEWING SHOP

LEARNING OBJECTIVE:

The students will be able to

LO1: Choose different tools, equipment and manufacturing process as required in the shop. LO2: Demonstrate various skill and techniques, safety, precaution and ethics desired in the

cutting and sewing shop.

LO3: Build different jobs as per drawing and estimation and adhering to standard working procedure and safety practices.

CONTENTS

CONTACT HOURS : 15 Hrs

49

Fabrics – Cotton, wool, silk, linen, synthetic, textured knitted fabrics, lining fabrics parts and functions of sewing machine, operation of sewing machines. Bobbin winding, Threading, Tension adjustment, Basic care & maintenance of sewing machines, sewing machine types & parts, cutting & layout plans, Marketing pattern, Basic Care & maintenance of sewing machines, Practice sewing on muslin, Sewing on straight lines, Zig-Zag lines, Wavy lines, Fabric Grain lines & how to differentiate the right side of the fabric from the wrong side before cutting & sewing. Sewing machines for domestic use, industrial use, specialized sewing machines, Tools & equipments – Pins, needles, Scissors, seam ripper, marking tools, measure tape, ruler, French curve, marking chalk etc. How to do minor & mechanical adjustment while sewing problems of stich formation & damage to the fabric, Basic Hand stiches, procedure for sewing, finish sewing.

- * Demonstration of different fabrics & grain line.
- * Demonstration of different types of cutting tools, measuring tools, sewing machine parts etc.
- * Demonstration of pattern making, hand sewing techniques & machine techniques.
- * Demonstration of sewing techniques on Muslin fabric.
- * Safety, precaution and ethics required in this shop.

Shop practices: (All jobs to be practiced)

- 1. Practice and make samples of different types of hand stitches and machine stitches. following safety precautions.
- 2. Practice appropriate body measurement, prepare measuring chart.
- 3. Practice sewing (machine stitching/ hand stitching) and prepare samples for different stiches on Muslin.

Book References:

- 1. Workshop Technology, S.K. Hajara Chaudhary, Media Promoters and Publishers, New Delhi, 2015.
- 2. Workshop Technology, B.S. Raghuwanshi, Dhanpat Rai and sons, New Delhi 2014.
- 3. Workshop Practice Manual, K. Venkat Reddy, BS Publications, Hyderabad 2014.
- 4. Kents Mechanical Engineering Hand book, John Wiley and Sons, New York.
- 5. A Text Book of Manufacturing Technology, R.K.Rajput, Laxmi Publications (p) Ltd., New Delhi
- 6. The 3D Printing Handbook Technologies, design and applications, Ben Redwood, Filemon,
- 7. Schoffer and Brian Garret, Coers & Roest @ #D Hubs B.V. 2017
- 8. Additive Manufacturing Technologies, Rapid Prototyping to Direct Digital Manufacturing, I. Gibson, D.W.Rosen, B. Stucker, Springer Science, LLC 2010.
- 9. Sewing for fashion designers, Anette Fisher, Laurence King Publishing Ltd. 2015.
- 10. Dress Pattern Designing, Natalie Bray, BSP Professional Books, 1986.
- 11. Practical Pattern Making, F.W. Barrows, The Norman w. Henley Publishing Co. 1913.
- 12. Masonry and Concrete, A.V. Dasare, Railway Engineering Technical Society, 2008, Pune, India.

7. Course Title: Applied Physics Lab-I

COURSE CODE: BS-107 Total Marks:100 Practical Examination:40 Practical Sessional Marks:60

Learning Objectives: The main objectives are:

- (i) To provide an experimental foundation for the theoretical concepts introduced in the theory class.
- (ii) Demonstrate the principles taught in the class.
- (iii) Develop the habit of honesty, patience and teamwork.

Course outcomes:

On completion of this practical course, the students will be able to:

- i) apply the concepts of precisions and errors in measurements by using different micrometers.
- ii) recognize, use and handle different basic electrical instruments.
- iii) arrange different electrical components to perform basic electrical experiments.

Teaching scheme (in hours)/ week

Lectures	Tutorial	practical	Credits
0	0	2	1

DETAILED COURSE CONTENTS:

Chapter Title	Content		
	1.Linear measurement by Vernier Callipers to determine:		
	a. Volume of a Wooden/ metallic Cube		
	b. Volume of a Wooden/ metallic solid and hollow cylinder		
	c. Volume of a Wooden/ metallic sphere		
	d. Thickness of a metallic washer		
Unit &	2.Linear measurement by Screw Gauge to determine:		
measurements	a. cross sectional area of a wire		
	b. thickness of a glass piece		
	3.Linear measurement by Spherometer to determine:		
	a. Thickness of glass piece		

	b. Radius of curvature of concave mirrorc. Radius of curvature of convex mirror	
	d. Depth of a hole.	
	4.To verify Ohm's law by Ammeter-voltmeter method.	
	5.To find equivalent resistance using voltmeter with	
	I. Three resistances connected in series.	
ELECTRICITY	II. Three resistances connected in parallel.	
	6.To measure the unknown resistance of the material of a wire by meter bridge using Wheatstone bridge principle.	
	7. To convert a given galvanometer into an ammeter of given range.	
	8. To convert a galvanometer of given resistance into a voltmeter of given resistance.	
	9. To compare the e.m.f. s of two cells using a potentiometer.	

16. Suggested learning Resource:

A. Book list:

Sl.	Title	Author	Publisher
No.			
Ι	Modern Approach to Physics	Dilip Sarma,	Kalyani Publishers- New
	Part I & II	N G Chakraborty, K	Delhi
		N Sharma	
2	Applied Physics Part I	Manpreet Singh,	S K Kataria & Sons-
		Dr. Major Singh,	New Delhi
		Mrs. Hitashi Gupta	
3	Applied Physics Part II	Manpreet Singh,	S K Kataria & Sons-
		Dr. Major Singh,	New Delhi
		Mrs. Hitashi Gupta	
4	Basic Applied Physics	R K Gaur	Dhanpat Rai Publication-
			New Delhi
5	Physics- Std XI, Std XII	-	HSC board/CBSE Board
6	Concept of physics Part I & II	H.C Verma	Bharati Bhawan-New
			Delhi

B. Websites:

I.<u>http://hyperphysics.phy-astr.gsu.edu/</u> II.<u>http://physics.info</u>

C. By using Models, Video etc.

8. Course Title: Applied Chemistry Lab-I

- 1. Course Title: Applied Chemistry Lab-I
- 2. Course Code:BS-109
- 3. Semester:1st Semester
- 4. Objective: At the end of the program the students will be able to
 - a. Prepare Standard Solution and determine the strength of Acid and Bases by volumetric titration.
 - b. Understand and differentiate various methods of qualitative and quantitative analysis.
 - c. Use various apparatus for precise measurements.

5. Course Outcome: After completion of the course, students will be able to

CO-1: Use safely various laboratory equipment and chemicals.

CO-2: Prepare a standard solution and find out the strength of acids / bases by titration against prepared standard solution.

CO-3: Analyse various water quality parameter and estimate hardness of water by complexometric titration.

CO-4: Learn detection of cation and anion in a given salt following standard procedure.

6. Teaching Scheme:

Hours/ Week	Hours/Semester
2	30

7. Teaching scheme (per week):

Lecture	Tutorial	Practical
0	0	2

8. Distribution of Marks:

Units	Торіс	Marks
1	Preparation of standard solution	5
2	Titration	10
3	Salts analysis	20
4	Viva	5
	Total	40

SCTE,ASSAM |

9. Detailed Course Content:

Units	Topics	Duration (In Hours)
	1.1 Discussion and demonstration on safety protocols in the	
1	laboratory.	2
	1.2 Hands on training on various laboratory equipments.	
1	1.1 Preparation of standard solution of Na ₂ CO ₃	2
1	1.2 Preparation of standard solution of Oxalic acid	2
	2.1 Determination of strength of H ₂ SO ₄ by titration against	
	N/10 Na ₂ CO ₃	
2	2.2 Determination of strength of NaOH by titration against	8
2	N/10 HCl	0
	2.3 Redox Titration- KMnO ₄ Vs H ₂ C ₂ O ₄	
	2.4 Estimation of hardness of water by EDTA.	
	3.1 To identify the acidic radicals by Dry and Wet Test (CO_3^{2-})	
3	,Cl ⁻ ,Br ⁻ , SO4 ²⁻ ,S ²⁻ ,NO ₃ ⁻)	
	3.2 To identify the basic radicals by Dry and Wet Test—	18
	$(,Pb^{2+}, Cu^{2+}, Fe^{3+}, Al^{3+}, Zn^{2+}, Co^{2+}, Ni^{2+}, Ba^{2+}, Sr^{2+}, Ca^{2+})$	
	Mg^{2+}, NH_{4^+}, K^+	

10. Suggested learning Resources:

a. Higher Secondary Practical Chemistry, NCERT.

b. Experiments in Applied Chemistry, Sunita Rattan, S.K. Kataria and Sons Publications.

c. Elementary Practical Chemistry by G.D. Sharma and Arun Baht.

d. Elements of Practical chemistry by Sudarsan Barua, S. Chand & Co.

e. Senior Secondary Practical Chemistry, Dr. Kamalesh Choudhury& Dr. Satyendra Kumar Choudhury, Bina Library

9. Course Title: Sports and Yoga

Course Code	:	HS-103
Course Title	:	Sports and Yoga
Number of Credits	:	1(L:0,T:0,P:2)
Prerequisites	:	NIL
Course Category	:	HS

Course Objectives:

- To make the students understand the importance of sound health and fitness principles as they relate to better health.
- To expose the students to a variety of physical and yogic activities aimed at stimulating their continued inquiry about Yoga, health and fitness.
- To develop among students an appreciation of physical activity as a lifetime pursuit and a means to better health.

Course Outcomes:

On successful completion of the course the students will be able to:

- (i) Practice Physical activities and Hatha Yoga focusing on yoga for strength, flexibility, and relaxation.
- (ii) Learn techniques for increasing concentration and decreasing anxiety which leads to stronger academic performance.
- (iii) Learn breathing exercises and healthy fitness activities.
- (iv) Understand basic skills associated with yoga and physical activities including strength and flexibility, balance and coordination.
- (v) Perform yoga movements in various combination and forms.
- (vi) Assess current personal fitness levels.
- (vii) Develop understanding of health-related fitness components: cardio respiratory endurance, flexibility and body composition etc.
- (viii) Improve personal fitness through participation in sports and yogic activities.
- (ix) Develop understanding of psychological problems associated with the age and lifestyle.

(x) Identify and apply injury prevention principles related to yoga and physical fitness activities.

(xi) Understand and correctly apply biomechanical and physiological principles elated to exercise and training.

Course Content:

- Physical Fitness, Wellness & Lifestyle
 - Meaning & Importance of Physical Fitness & Wellness
 - o Components of Physical fitness
 - o Components of Health related fitness
 - Components of wellness
 - o Preventing Health Threats through Lifestyle Change
 - SCTE,ASSAM |

• Concept of Positive Lifestyle

Fundamentals of Anatomy & Physiology in Physical Education, Sports and Yoga

- Define Anatomy, Physiology & Its Importance
- Effect of exercise on the functioning of Various Body Systems. (Circulatory System, Respiratory System, Neuro-Muscular System etc.)

• Postures

- Meaning and Concept of Postures.
- Causes of Bad Posture.
- Advantages & disadvantages of weight training.
- Concept & advantages of Correct Posture.
- Common Postural Deformities– Knock Knee; Flat Foot; Round Shoulders; Lordosis, Ky-phosis, Bow Legs and Scoliosis.
- Corrective Measures for Postural Deformities

• Yoga

- Meaning & Importance of Yoga
- o Elements of Yoga
- o Introduction-Asanas, Pranayama, Meditation & Yogic Kriyas
- Yoga for concentration & related Asanas (Sukhasana; Tadasana; Padmasana & Shashankasana)
- Relaxation Techniques for improving concentration- Yog- nidra

• Yoga & Lifestyle

- Asanas as preventive measures.
- Hypertension: Tadasana, Vajrasana, Pavan Muktasana, Ardha Chakrasana, Bhujangasana, Sharasana.
- Obesity: Procedure, Benefits & contraindications for Vajrasana, Hastasana, Trikonasana, Ardh Matsyendrasana.
- o Back Pain: Tadasana, Ardh Matsyendrasana, Vakrasana, Shalabhasana, Bhujangasana.
- Diabetes: Procedure, Benefits & contraindications for Bhujangasana, Paschimottasana, Pavan Muktasana, Ardh Matsyendrasana.
- Asthema: Procedure, Benefits & contraindications for Sukhasana, Chakrasana, Gomukhasana, Parvatasana, Bhujangasana, Paschimottasana, Matsyasana.

• Psychology & Sports

- Definition & Importance of Psychology in Physical Edu. & Sports
- o Define & Differentiate Between Growth & Development
- Adolescent Problems & Their Management
- Emotion: Concept, Type & Controlling of emotions
- Meaning, Concept & Types of Aggressions in Sports.
- Psychological benefits of exercise.
- Anxiety & Fear and its effects on Sports Performance.
- Motivation, its type & techniques.

• Understanding Stress & Coping Strategies

References:

- 1. Modern Trends and Physical Education by Prof. Ajmer Singh.
- 2. Light On Yoga By B.K.S. Iyengar.
- 3. Health and Physical Education–NCERT(11th and 12th Classes)

59

10. Course Title: Communication Skills in English Lab

Course Title	Communication Skills in English - Lab
Course Code	HS 105
Number of Credits	1.5
Prerequisites	Class X
Number of Credits	1.5 (L:0, T:0. P:3)

RATIONALE

Effective Spoken English is indispensible for any career in the global market. This course introduces the science of the spoken language through a guided Language Lab program which works on pronunciation of English from the word level to the sentence level and finally to the Discourse Level. This course will enhance the personality of the diploma student and better prepare him/her to face the challenges of the competitive market.

COURSE OBJECTIVES

This course aims at helping students to attain the following

- **1.** To equip the students with good communication skills.
- **2.** To emphasize the need of English in the technical world.
- **3.** To prepare them for interviews and future job environments.
- **4.** To train the students in the art of conversation and discussion.

COURSE OUTCOME

This course aims at helping the students to attain the following industry identified competencies through various teaching learning experiences:

- 1. CO1 = The student will be able to identify common errors in spoken and written communication
- 2. CO2 = The student will be able to pronounce words in English with fluency with confidence
- 3. CO3 = The student will have a better word stock from the Entry Level

Teaching Scheme (in hours) Lecture Tutorial/Class Test Practical Total

Lectures	Tutorial	Practical	Credits
0	0	3	1.5

Course Content:

UNIT 1 - Listening Skills Listening Process and Practice				
ChapterChapter TitleChapter ContentIntended			Intended	Duration
No.			Learning	in Hours
			Outcome	
1.	Phonetic	Introduce the definitions of	The student will be	1
	Definitions	important terms in phonetics viz.	able to recognise	

	1	1 11 1 1	1	
	and	phonetics, syllable, accent,	phonemes,	
	Vocabulary	transcription, articulators,	allophones,	
	formation	phoneme, allophone, aspiration	syllables, accent	
			etc.	
2.	Important	Introduce the consonants,	The students will	1
	concepts	vowels and diphthongs	be able to	
			recognise the	
			consonants, the	
			vowels and the	
			diphthongs	
3.	Basics of	Basic idea of use of Phonemes,	The students will	1
	Phonetics	word stress, sentence stress	be able to identify	
			the phonemes in	
			passages and	
			sentences.	
			The students will	
			also have an idea of	
			word stress and	
			sentence stress in	
			isolation and in	
			context	
4.	Stress and	Definition of Intonation	The student will be	1
	Intonation	Voice modulation with an idea	able to introduce	
		of stress, tones in the English	intonation in	
		language	speech and use	
		Use of different tones in	tones for change in	
		different situations – focus of	meaning of	
		change in meaning	sentences	

	UNIT 2: Listening Skills, Listening Process and Practice				
Chapter	Chapter name	Chapter content	Intended	Duration	
No			Learning	in hours	
			Outcome		
1.	Phonemes and	Introduction to Phonemes	The student will	4	
	allophones in	and allophones in isolation	be able to identify		
	isolation	and listening self tests of the	the different		
		same	phonemes in		
			allophones in the		
			English language		
			and also produce		
			the same		
2.	Phonemes in	Introduction to Phonemes in	The student will	4	
	sentences and	sentences and listening self	be able to identify		
	listening	tests of the same	the phonemes in		
			sentences and		
			produce them		
3.	Phonemes in context	Introduction to phonemes in	The student will	3	
		sentences and listening self	be able to identify		

1ST SEMESTER, NEW SYLLABUS

		tests of the same	and produce the	
			sentences	
4	Recorded lectures	Introduction to phonetically	The student will	3
1.	poems interviews	correct recorded lectures	be able to	5
	and speeches	poems interviews and	recognise the	
		speeches	differences	
		. F	between a	
			phonetically	
			correct	
			conversation and a	
			normal	
			conversation	
5.	Dialogues and	Introduction of phonetically	The student will	2
	passages	correct dialogues and	be able to produce	
		passages and listening self	effective	
		tests	dialogues and	
			passages in real	
6	Polo playa	The student will be given	The student will	5
0.	Role plays	real life situation role plays	be able to use the	5
		real file situation fore plays	knowledge gained	
			from language lab	
			classes and	
			listening tests to	
			role play in real	
			life situations	
7.	Basic Interview skills	The student will be	The student will	5
	with respect to	introduced to basic interview	be able to face an	
	spoken English	skills – facing an interview	interview and	
	Springhoord		interact with the	
	5pringboard 1 INTEDVIEW		confident manner	
	1. INTERVIEW OUFSTIONS		with the proper	
	TOC - INTERVIEW		and effective use	
	OUESTIONS		of the English	
	Infosys Springboard		language	
	(onwingspan.com)		0 0	
	2. Interview			
	questions			
	TOC - Interview			
	Questions Infosys			
	Springboard			
	(<u>onwingspan.com</u>)			
	5. Cracking			
	TOC - Cracking			
	Interviews Infosvs			
	Springboard			
	(onwingspan.com)			
	4.			

8.	Springboard Better Spoken – Introduction <u>TOC - Better Spoken</u> - Introduction <u>Infosys Springboard</u> (onwingspan.com)	The student will get a video presentation of the entire concept of spoken English in general	The student will be able to know the basics of ideas surrounding spoken English in general.	50 mins
9.	Springboard Stage Manners Stage Manners - Viewer Page Infosys Springboard (onwingspan.com)	The student will get an idea of how to present oneself in a presentation following 4 criteria	The student will be able to know about proper presentations with grooming and dress, eye contact, body language with proper voice modulation.	50 mins
10.	Springboard Interview <u>01 Introduction -</u> <u>Viewer Page Infosys</u> <u>Springboard</u> (onwingspan.com)	The student will get an idea on how to attend an interview	The student will be able to attend an interview with full preparation	25 mins
11.	Project Work	The student will have to work on project of a given topic as a part fulfillment of the course in English language lab	The students will be able to work together in a group, draft a script and confidently present the same on individual terms.	5

Prescribed Book:

A Handbook on Communication Skills in English and Language Lab for Polytechnics by Dr Papori Rani Barooah

An Outline of English Phonetics by Daniel Jones

English Pronouncing Dictionary 14th Edition by Daniel Jones

References from Springboard

1. Job Interviews Tips and Skills <u>TOC - Job Interviews Tips and Skills | Infosys Springboard (onwingspan.com)</u>

2. Using Business Etiquette to Increase Your Professionalism

TOC - Using Business Etiquette to Increase Your Professionalism | Infosys Springboard

(onwingspan.com)

SCTE,ASSAM |

<u>Curriculum Development cell, State Council for Technical Education,</u> <u>Directorate of Technical Education, Assam</u>

S1. No.	Name	Designation
1	Shri Dhrubajyoti Borah, ACS	Director of Technical Education, Assam
2	Dr. Mrinalini Das	Controller of Examination, State Council for Technical Education, DTE, Assam
3	Dr. Indrani Gogoi	Training cum Placement Officer, DTE, Assam
4	Shri Ashok Das	Principal, Assam Textile Institute
5	Dr. Utpal Baruah	Principal, Kamrup Polytechnic
6	Shri Boobool Sarma	Assistant Controller of Examination, SCTE, DTE, Assam

Subject-wise Committees for Curriculum of Diploma in Engineering & Technology (1st Semester)

Mathematics:

Sl No.	Name	Institute	Designation
1	Dr. Geetali Das, Lecturer(SG)	Assam Engineering Institute, Guwahati	Member Secretary
2	Dr. Parbin Ahmed, Lecturer(SG)	Assam Textile Institute, Guwahati	Member
3	Dr. Sampa Das, Lecturer (SG)	Dibrugarh Polytechnic, Dibrugarh	Member
4	Mrs. Gayatree Kakati Boruah.	PCPS Girls' Polytechnic, Guwahati	Member

Physics:

Sl No.	Name	Institute	Designation
1	Dr.TulikaTamuly, Lecturer	Dibrugarh Polytechnic, Dibrugarh	Member Secretary
2	Dr. Snigdha Bhattacharjee, Lecturer	Karimganj Polytechnic, Karimganj	Member
3	Mr. Monzurul Kader Ahmed, Lecturer	Goalpara Polytechnic, Goalpara	Member
4	Mr. Prokash Pegu, Lecturer	Dibrugarh Polytechnic, Dibrugarh	Member

Sub-Committee for Applied Physics:

Sl No.	Name	Institute	Designation
1	Dr. Purabi Gogoi, Assistant Professor	DUIET, Dibrugarh University	Member
2	Mr. Jyotinav Mudiar, Assistant Manager	IOCL, Bongaigaon Refinery	Member
3	Dr. Samiran Hazarika, Lecturer	Bongaigaon Polytechnic	Member
4	Mr. Sanjeeb Kalita, Lecturer	Baksa Polytechnic	Member
5.	Himanshu Sharma Pathok, Lecturer	POWIET, Jorhat	Member

Chemistry:

Sl No.	Name	Institute	Designation
1	Mr.Bedanta Barhoi, Lecturer	Lakhimpur Polytechnic, Lakhimpur	Member Secretary
2	Mrs. Mridusmita Bora,Lecturer	Golaghat Polytechnic, Golaghat	Member
3	Dr. Shruti Sharmah, Lecturer	Baksa Polytechnic, Baksa	Member

Sl No.	Name	Institute	Designation
1	Dr. Pankaj Goswami, HOD(i/c) Chemistry	Silchar polytechnic	Member
2	Smt. Archana Pareek, Lecturer(3f)	Tinisukia Polytechnic	Member
3	Dr. Junali Handique, Lecturer (PT)	ResidentialGirls' Polytechnic	Member
4	Dr. Abhijit Boruah, Lecturer (PT)	Jorhat Engineering College	Member
5	Smt. Sanjana Devi, Lecturer (PT)	Sonitpur Polytechnic	Member
6	Dr. AbdulAziz Ali, Assistant Professor	Dhemaji Engineering College	Member
7	Shri Mukul Chandra Bora, Lecturer(SG)	Nagaon Polytechnic	Member
8	Shri Utpal Kalita, Lecturer(3f)	Morigaon Polytechnic	Member
9	Shri Manash Pratim Nath, Lecturer(3f)	Udalguri Polytechnic	Member
10	Dr. Pankaj Hazarika, Lecturer (PT)	Lakhimpur Polytechnic	Member
11	Dr. Durlov Saikia, Lecturer (PT)	Kamrup Polytechnic	Member
12	Dr. Muhsina Kafiah Huda, Lecturer (PT)	Sibsagar Polytechnic	Member
13	Dr. Preeti Rekha Boruah, Lecturer (PT)	Dhemaji Polytechnic	Member
14	Dr. Maitrayee Saikia, Lecturer (PT)	AssamTextile Institute	Member
15	Mr. Monjur Hassan, Lecturer(3f)	Hailakandi Polytechnic	Member
16	Dr. Bharati Deka, Lecturer(3f)	Nalbari Polytechnic	Member
17	Dr. Kashyap J. Tamuly, Chemist, Surface	ONGC, Sivasagar Assam Asset	Member
	Chemistry		
18	Shri Madhurjya Gogoi, Scientific Assistant,	ONGC	Member
	Chemistry		

Sub-Committee for Applied Chemistry:

English:

Sl No.	Name	Institute	Designation
1	Dr. Papori Rani Barooah,	PCPS Cirls' Polytochnia Cuwahati	Mambar Sagratary
	Lecturer(SG)	PCPS GIRS Polytechnic, Guwanati	wiember Secretary
2	Dr. Babori Mahanta, Lecturer, SS	Dibrugarh Polytechnic, Dibrugarh	Member
3	Ms. Kaberi Sarma Thakur, Lecturer	Golaghat Polytechnic, Golaghat	Member
4	Ms. Suborna Haque, Lecturer	Goalpara Polytechnic, Goalpara	Member

Engineering Graphics:

Sl No.	Name	Institute	Designation
1	Dr. Krishna Kamal Das Member		
	Secretary of Civil Engg Syllabus	Bongaigaon Polytechnic	
	Committee		Mombor Socratory
2	Shri Ram Krishna Pathak, Member		Member Secretary
	Secretary of Mechanical Engg	Dibrugarh Polytechnic	
	Syllabus Committee		
3	Dr. Dimbalita Deka, Assistant	Colorbat Engineering College	Mombor
	Professor	Golaghat Engineering Conege	WICHIDEI
4	Zeenat Arman, Lecturer	Barpeta Polytechnic	Member
5	Chiranjeeb Barua, Lecturer	Barpeta Polytechnic	Member
6	Anusuya Gowami, Lecturer	Sonitpur Polytechnic	Member
7	Bidisha borthakur, Lecturer	Golaghat polytechnic	Member

Sl No.	Name	Institute	Designation
1	Shri Ram Krishna Pathak, Member Secretary of Mechanical Engg Syllabus Committee	Dibrugarh Polytechnic	Member Secretary
2	Dr. Binoy Sarma, Workshop Superintendent	Assam Engineering College	Member
3	Smt. Archana Choudhury, Lecturer(S.G)	Assam Engineering Institute	Member
4	Shri Pradip Kalita, Lecturer(S.G)	Assam Engineering Institute	Member
5	Smt. Dipika Haloi, Lecturer(S.S	Assam Engineering Institute	Member
6	Shri Bitopan Kakati, Lecturer	Barpeta Polytechnic	Member
7	Mr. Anowar Hussain, Senior Instructor	Assam Engineering Institute	Member
8	Shri Jayanta Das, Junior Instructor	Assam Engineering Institute	Member
9	Shri Hemanta Nath, Junior Instructor	Assam Engineering Institute	Member
10	Shri Kamal Kishor Das, Junior Instructor,	Barpeta Polytechnic	Member
11	Shri Arindam Dutta, Training Manager	Larsen& Toubro	Member
12	Shri Manoj Bhuyan, Lecturer (SG)	Assam Textile Institute	Member
13	Shri Dimbeswar Takoe, Workshop Superintendent	Lakhimpur Polytechnic	Member

Engineering Workshop Practice:

Sports & Yoga:

Sl No.	Name	Institute	Designation
1	Dr. Sima Chhawchharia, Lecturer	Bongaigaon Polytechnic	Member Secretary
2	Shri Ramen Kr. Choudhury, Lecturer (SG)	Nalbari Polytechnic	Member
3	Dr. Mayur Barman, Lecturer (PT)	Nalbari Polytechnic	Member
4	Smt. Priyanka Talukdar, Lecturer (SG)	Kamrup Polytechnic	Member
5	Mr. Tayab Ali, Lecturer (SS)	POWIET, Jorhat	Member
6	Shri DebabrataTalukdar, Lecturer (SG)	Silchar Polytechnic	Member

REVIEWERS:

- 1. Md. Sabikur Rahman, Jorhat Engineering College.
- 2. Dr. Afazuddin Ahmed, Assam Engineering College.
- 3. Dr. Gitanjali Mazumdar, Assam Engineering College.
- 4. Mr. Kishor Kumar Das, Assam Engineering College.
- 5. Dr. Pankaja Das, Assam Engineering College.
- 6. Ms. Anakshi Das, Assam Engineering College.
- 7. Dr. Parasa Hazarika, Jorhat Institute of Science & Technology.
- 8. Dr. Monisa Rajkhowa, Jorhat Institute of Science & Technology.
- 9. Dr. Chandra Chutia, Jorhat Institute of Science & Technology.
- 10. Dr. Diganta Goswami, Barak Valley Engineering College.
- 11. Dr. Satyajit Paul, Golaghat Engineering College.
- 12. Smt. Saheera Azmi Hazarika, Dhemaji Engineering College.
- 13. Mr. Jameson Mushahary, Jorhat Institute of Science & Technology.
- 14. Smt. Dibyajyoti Saikia, Bineswar Brahma Engineering College.
- 15. Mr. Anjan Kr. Kakati, Bineswar Brahma Engineering College.
- 16. Dr. Medalson Ronghang, Bineswar Brahma Engineering College.
- 17. Dr. Kamaljyoti Talukdar, Bineswar Brahma Engineering College.