GOVERNMENT OF ASSAM STATE COUNCIL FOR TECHNICAL EDUCATION DIRECTORATE OF TECHNICAL EDUCATION, ASSAM

FINAL SYLLABUS OF 2nd SEMESTER

Table of Contents

S. No.	Title	From	То
1	Inclusion of NEP, 2020	2	3
2	General Course Structure & Credit Distribution	5	10
3	Detailed 2 nd Semester curriculum content	11	49
4	Curriculum Development Cell, Subject wise list of Committee Members and Reviewers	50	51

Inclusion of National Education Policy, 2020:

As envisioned in the NEP 2020 the State Council for Technical Education, Assam will be responsible for mentoring its affiliated Polytechnics so that they develop capabilities and achieve minimum benchmarks in academic and curricular matters, teaching and assessment.

State Council for Technical Education (SCTE), Assam will notify the pool of MOOCs courses duly approved by its statutory bodies and map them in Academic Bank of Credits (ABC). Affiliated Polytechnics may opt for any of these courses as required. State Council for Technical Education (SCTE) will take suitable action for preparation of syllabus for these courses including learning objective and learning outcome.

The State Council for Technical Education (SCTE) may fix the minimum number of credits to be earned by the students from a parent institution.

All the affiliating institutions will complete Academic Bank of Credits registration through SCTE. Institute will monitor the opening of ABC account by all the students.

Salient features

Salient features that are to be considered for developing the curriculum aligned to NEP 2020 are as follows:

- Reduced number of credits.
- Introduction of Student Induction Program.
- Well defined learning objectives & outcomes for each course.
- Inclusion of courses on socially relevant topics.
- Built-in flexibility to the students in terms of professional elective and open Electivecourses.
- Mandatory internship to equip the students with practical knowledge and provide them exposure to real time industrial environments.
- Virtual Labs.
- Mapping of Courses to its equivalent NPTEL/SWAYAM Course.
- Course on 'Entrepreneurship and Startups' to encourage entrepreneurial mindset.
- Introduction of Design Thinking and Universal Human Value course.

Basic Guidelines:

The existing Credit System is revised as Choice Based Credit System (CBCS) in line with NEP guidelines, to infuse innovation and flexibility. No hard separation between streams, between curricular and extra-curricular, between Vocational and Academic, Multidisciplinary and holistic education across the disciplines, Ethics and Human & Constitutional values, Life skills, use of technology as part of all curriculum.

- An academic year is divided into two semesters as per AICTE guidelines.
- A semester consists of approximately 90 working days. One working week will have approximately 40 hours of instructional time.
- There shall also be a Winter Internship Program for duration of 4 weeks/one month from 1st January to -31st January.

• Summer term courses may be offered on a fast-track mode to enable students to complete arrears/special courses.

• Teachers may avail semester end vacations after the end of each semester. Subject to completion all kinds of examination related work.

• The Polytechnics under the Directorate of Technical Education can decide on the kind of courses to be offered in the summer term, based on the requirements and also based on the availability of teaching faculty.

• Internship/apprenticeship can be carried out during the winter term, mandatorily for regular student.

• Students who wish to exit after 1st year or 2nd year of study, have to undergo mandatory bridge courses as defined in the course structure.

Induction Program:

The Essence and Details of Induction program can be find from the 'Detailed Guide on Student Induction program', as available on AICTE Portal,

(Link: https://www.aicteindia.org/sites/default/files/Detailed%20Guide%20on%20Student %20Induction%20program.pdf),

The Induction program for students to be offered right at thestart of the first year for three-week duration.

- Physical activity
- Creative Arts
- Universal Human Values
- Literary
- Proficiency Modules
- Lectures by Eminent People
- Visits to local Areas

Mandatory Visits/ Workshop/Expert Lectures:

- a) It is mandatory to arrange one industrial visit every semester for the students of eachbranch.
- b) It is mandatory to conduct a One-week workshop during the winter break after fifthsemester on professional/ industry/ entrepreneurial orientation.
- c) It is mandatory to organize at least one expert lecture per semester for each branch by inviting resource persons from domain specific industry

GENERAL COURSE STRUCTURE & CREDIT DISTRIBUTION

A. Definition of Credit:

1 Hr. Lecture (L) per week	1 credit
1 Hr. Tutorial (T) per week	1 credit
1 Hr. Practical (P) per week	0.5 credit
2 Hours Practical (P) per week	1 credit

B. Range of Credits:

In the light of the fact that a typical Model Four-year Under Graduate degree program in Engineering has about 160 credits, the total number of credits proposed for the three-year Diploma program in Engineering & Technology is 120.

C. Structure of Diploma Engineering program:

The structure of Diploma Engineering program shall have essentially the following categories of courses with the breakup of credits as given:

Sr. No.	Category	Suggested Breakup of Credits
1.	Humanities & Social Sciences courses	8*
2.	Basic Science courses	19*
3.	Engineering Science courses	15*
4.	Program Core courses (Branch specific)	45*
5.	Program Elective courses (Branch specific)	12*
6.	Open Elective courses (from other technical and /or emerging subjects)	9*
7.	Project work, seminar and internship in industry or elsewhere	12*
8.	Audit Courses [Environmental Sciences, Induction training, Indian Constitution, Essence of Indian Traditional Knowledge etc.]	(non-credit)
	Total	120*

*Minor variation is allowed as per need of the respective disciplines.

D. Course code and definition:

Course code	Definitions
L	Lecture
Т	Tutorial
Р	Practical
HS	Humanities & Social Sciences Courses
BS	Basic Science Courses
ES	Engineering Science Courses
PC	Program Core Courses
PE	Program Elective Courses
OE	Open Elective Courses
AU	Audit Courses
SI	Summer Internship
PR	Project
SE	Seminar

E. Course level coding scheme:

Three-digit number (odd numbers are for the odd semester courses and even numbers are for even semester courses) used as suffix with the Course Code for identifying the level of the course e.g.

101, 102 ... etc. for first year 201, 202 Etc. for second year

301, 302 ... for third year

F. Evaluation Scheme for 2nd Semester of Diploma in Engineering courses under State Council for Technical Education (SCTE), Assam

For Theory Courses:

(The weightage of Internal assessment is 40% and for End Semester Exam is 60%) The student has to obtain at least 40% marks individually both in internal assessment and end semester exams to pass.

For Practical Courses:

(The weightage of Internal assessment is 60% and for End Semester Exam is 40%) The student has to obtain at least 40% marks individually both in internal assessment and end semester exams to pass.

For Summer Internship / Projects / Seminar etc.

Evaluation is based on work done, quality of report, performance in viva-voce, presentation etc.

Note: The internal assessment is based on the student's performance in mid semester tests (two best out of three), quizzes, assignments, class performance, attendance, viva-voce in practical, lab record etc.

G.Mapping of Marks to Grades

Each course (Theory/Practical) is to be assigned 100 marks, irrespective of the number of credits, and the mapping of marks to grades may be done as per the following table:

Range of Marks	Assigned Grade	Grade Point	Remarks
91-100	A ⁺	10	Outstanding
81-90	А	9	Excellent
71-80	B ⁺	8	Very Good
61-70	В	7	Good
51-60	C ⁺	6	Average
46-50	С	5	Below Average
40-45	D	4	Pass
< 40	F (Fail due to less marks)	-	Fail
-	F ^R (Fail due to shortage of attendance and therefore, to repeat the course)	_	_

H.Credit Distribution, Mark Distribution and Break up of Internal Assessment Marks as per following table:

a) Credit Distribution:

Semester-II

S. No.	Course Code	Course Title	L	Т	Р	Credit
1	BS-201	Mathematics-II	3	1	0	4
2	BS-202	Applied Physics-II	2	1	0	3
3	ES-202	Introduction to IT Systems	2	0	0	2
4	ES-204	Fundamentals of Electrical and Electronics Engineering	2	1	0	3
5	ES-206	Engineering Mechanics	2	1	0	3
6	BS-207	Applied Physics Lab– II 0		0	2	1
7	ES-208	Introduction to IT Systems lab 0				2
8	8 ES-209 Fundamentals of Electrical and Electronics 0 0 2 Engineering lab				1	
9	ES-210	Engineering Mechanics lab	0	0	2	1
10	AU-201	Environmental Science 2 0 0				0
TOTAL CREDIT=						20
	Total Hours per week = 27 [L=13; T=4; P=10]					

b) Marks Distribution

<u>Semester – II</u>

S. No.	Course Liffe		Code Course Title (Theory)		ESE		Internal Assessment (Practical)		Practical Test		Total Marks	Pass Marks
110.	Coue		Total Marks	Pass Marks	Total Marks	Pass Marks	Total Marks	Pass Marks	Total Marks	Pass Marks	(Course)	(Course)
1	BS-201	Mathematics-II	40	16	60	24	-	-	-	-	100	40
2	BS-202	Applied Physics-II	40	16	60	24	-	-	-	-	100	40
3		Introduction to IT Systems	40	16	60	24	-	-	-	-	100	40
4		Fundamentals of Electrical and Electronics Engineering	40	16	60	24	-	-	-	-	100	40
5	ES-206	Engineering Mechanics	40	16	60	24	-	-	-	-	100	40
6	BS-207	Applied Physics Lab– II	-	-	-	-	60	24	40	16	100	40
7		Introduction to IT Systems lab	-	-	-	-	90	36	60	24	150	60
8		Fundamentals of Electrical and Electronics Engineering lab	-	-	-	-	90	36	60	24	150	60
9		Engineering Mechanics lab	-	-	-	-	60	24	40	16	100	40
10	AU-201	Environmental Science	-	-	-	-	60	24	40	16	100	40
	Total 1000											

N.B: The marks of Audit Course is not included in total marks.

c) Break Up of Internal Assessment Marks

Internal Assessment for Theory (TA+HA&CT)

Component	Teacher's Assessment (TA)			Home As (HA&CT)	Total			
component	Attendance	Discipline	Class Participation	Home Assignment	Presentation / Seminar	Quiz	Class Test	Iotai
Maximum Marks	5	1	2	4	6	2	20	40
Note: Three (3) class tests must be conducted for each course. For calculation of Internal Assessment, best two (2) class tests out of the three (3) conducted is to be considered.								

Internal Assessment for Practical (PA)

(i). For 60 marks

Component	Maximum Marks
Teacher's Assessment (TA)	· ·
Attendance	10
Discipline	2
Practical Assignment	· ·
Practical Work and/or Laboratory Report	30
Presentation	10
Viva	8
Total	60

(ii). For 90 marks(IT System Lab/FEEE Lab)

Component	Maximum Marks			
Teacher's Assessment (TA)				
Attendance	10			
Discipline	5			
Practical Assignment				
Practical Work and/or Laboratory Report	45			
Presentation	15			
Viva	15			
Total	90			

Note: Student must pass in Internal Assessment (Theory & Practical). If a student fails in Internal Assessment, he/she will not be allowed to appear in the End Semester Examination.

- d) Grading System proposed is Absolute Grading System.
- e) Conversion factor from Cumulative Grade Point Average (CGPA) to Percentage (%) is 10.

Range of Attendance with Marks (for Theory):

Sl No.	Range of Attendance	Marks
1	96% and above	5 Mark
2	91% to 95%	4 Mark
3	86% to 90%	3 Mark
4	81% to 85%	2 Mark
5	76% to 80%	1 Mark
6	75%	Only permitted to appear in the exam
7	Between 60% to 75%	NC: May appear in the exam if there are genuine reasons
8	Below 60%	DC: Cannot appear in the exam

Range of Attendance with Marks (for Practical):

Sl No.	Range of Attendance	Marks
1	96% and above	10 Mark
2	91% to 95%	9 Mark
3	86% to 90%	8 Mark
4	81% to 85%	7 Mark
5	76% to 80%	5 Mark
6	75%	Only permitted to appear in the exam
7	Between 60% to 75%	NC: May appear in the exam if there are genuine reasons
8	Below 60%	DC: Cannot appear in the exam

Valid Ground for Non-collegiate students:

- 1. Medical grounds.
- 2. Participation in a state/national level competition, including the journey period as approved by the Head of Institution.
- 3. Participation in a seminar of national/international level, workshop or conference, including the journey period as approved by the Head of Institution.
- 4. Participation in voluntary programmes conducted by the Institute/Directorate as per Government notification.
- 5. Any other grounds which the Examination Committee, in consultation with the Secretary, SCTE may approve.

Current Examination Fee structure:

- Non Collegiate Fees: Rs. 300/- (per subject)
- Examination Fee: Rs. 500/-
- Retest Fee: Rs. 200/- (per subject)

N.B: The rates may be changed subject to Government order.

Conditions for Dis-Collegiate (DC) student:

- (i) Any candidate who is an internal student but has attended less than 60% of classes in any one or more subjects on theory and/ or practical shall not be eligible to appear in the respective semester examination and termed as Dis-collegiate student.
- (ii) Dis-collegiate students will have to repeat the semester by taking admission in the next session.

Note: The above guidelines may be changed/modified as per AICTE and Government of Assam notification from time to time.

Detailed Second Semester Curriculum Contents (Common to all Branches)

1. Course Title: Mathematics-II

1. SUBJECT/ COURSE CODE: BS-201

2. Semester: Second semester

- 3. Objectives: The main objectives of this course are:
 - i) To learn about the circle and conic section.
 - ii) To learn about the three dimensional Co-ordinate geometry.
 - iii) To learn about measures of central tendency of statistical Data.
 - iv) To learn about relations and functions of variables and their derivatives.
 - v) To learn about integration methods and its applications for measuring areas.

4. Course Outcome: On completion of the course, students will be able to

- CO -1. Recognise and differentiate between closed and open curves under different conditions
- CO -2. Locate and object in space and calculate its distance with reference to other objects.
- CO 3. Understand several numerical methods belonging to measure of central tendency to describe the characteristics of a data set.
- CO -4. Obtain Derivative of a function and its application.
- CO- 5. Obtain Integration of a function and its application using properties of Definite Integral.

5. Teaching scheme(in hours):

Teaching scheme(in hours)				
Lecture	Tutorial	Total per week		
3	1	4		

6. Detailed course content:

Chapter No	Chapter Title	contents	Intended learning	Hour
			outcomes	(Theory)
				45
Group - A : CO-OI	RDINATE GEOMET	FRY (TWO and three	ee DIMENSION)	
Hours: 8 Marks: 10)			
	Co-Ordinate	1.1 Circle:	1.Define and	
A1	geometry of two	Standard equation,	explain the	5
	dimensions	Equation of a circle	concept of a circle.	
		under different	2.Define conic	
		conditions.	section.	
		Introduction to the		
		concepts of		
		Parabola, Ellipse		
		and hyperbola		
		(related simple		
		problems)		

		-	1	SCT Technology for an
A2	Co-Ordinate geometry of three dimensions	2.1 Three dimensions Co- Ordinate system . Distance formulae, Section formulae, direction cosines, direction ratios.	Locate a point in space, find its locus, distance from other points, objects(linear as well as angular)	3
GROUP- B Sta	ntistics HOURS : 4 MARKS : 5			
B1	Measure of Central Tendency.	Mean, Median and Mode. (simple problems.) Relation between mean median and Mode.	Understand Basic measures of Central Tendency.	4
GROUP- C DI HOURS : 19	FFERNTIAL CALCULU MARKS : 25		I	1
C1	Function	 1.1. Definition of Function and type of functions. Odd and even function, Periodic, composite, explicit, implicit and Parametric functions 1.2. Domain , Range, and 	Understand the different type of functions and their Domain and Range.	3
C2	Limit of a function	co- domain of function . 2.1. Definition , standard limits .	Understand Limit of a function under different conditions.	3
		2.2. Evaluation of limits.		
C3	Continuity of a function .	3.1. Definition, testing of continuity problems.	Learn behaviour of continuous and discontinuous functions.	2
C4	Differentiation or Derivative of a function.	 4.1.Differentiation of some Standard functions using first Principle of derivative. 4.2. Derivative of Function of a function, implicit function and Parametric Functions. 	differentiation. Learn to obtain derivatives of different type of	3 3
		implicit function and	derivatives of	3

				SCTE
		4.3. Geometrical interpretation of first order derivative Equation of Tangent, normal.	Understand the Geometrical significance of derivatives.	2
		4.4. Second order derivative. Maxima, Minima, Engineering application of Second order derivative.	Learn to find higher order Derivative and their application.	3
GROUP- D INTEGR	AL CALCULUS HO	URS : 14 MARKS : 20		
D1	INTEGRATION	1.1 Integration as inverse process of differentiation. List of formulae .	Understand the meaning of integration .	2
D2	Method of Integration	Integration by method of substitution. Integration by parts. Integration by algebraic fractions.	Learn the different methods of integration.	5
D3	Definite Integral	3.1 Definition,	Learn and apply different properties of Definite Integral to solve problems .	5
	Application of Integration	4.1. Area under curve.	Know the application of Definite Integral.	2

7. Distribution of Marks :

Chapter	Chapter Title	Type of question			Total
no.		Objective Type	Short questions	Descriptive questions	
A1	Co-Ordinate geometry of two dimensions	1	2	3	
A2	Co-Ordinate geometry of three dimensions	1		3	
B1	Measure of Central Tendency.	2		3	
C1	Functions	2	2		
C2	Limit of a function	2		3+3	
C3	Continuity of a function	1	2		
C4	Differentiation or Derivative of a function.	2	2	3+3+3	
D1	Integration	1			
D2	Method of Integration	2	2	3	
D3	Definite Integral	1	2	3	
D4	Application of Integration			3	
		15	12	33	60

9. Suggested implementation strategies: The syllabus can be completed by taking regular classes along with tutorial classes. Audio-Visual aids also can be used.

10. Suggested learning resources:

Text Books (T1, T2):

1. An Introduction to Polytechnic Mathematics Vol- II by Geetali Das , Ajanta Choudhury, Parbin Ahmed.

- 2. Engineering mathematics by H.K Das .
- 3. Applied Mathematics (Vol I & II) by RD Sharma.
- 4. Calculus for beginners by R.K Chakravorty .

Annexure -1

TABLE OF SPECIFICATION FOR THEORY:

Sr. no	Topic (a)	Time allotted in hours (b)	Percentage weightage(c)	k	С	А	НА
1	CO-ORDINATE GEOMETRY (TWO and	8	17.8%	2	2	6	

	three DIMENSION)						
2	Statistics	4	8.9%	2		3	
3	DIFFERNTIAL CALCULUS	19	42.2%	7	6	15	
4	INTEGRAL CALCULUS	14	31.1%	4	4	9	
	Total	45	100	15	12	33	

K = knowledge C = Comprehension A

A = application

HA = Higher than application (Analysis, Synthesis, Evaluation).

$$C = \frac{b}{\sum b} \times 100$$

2. Course Title: Applied Physics-II

1.Course Title: Applied Physics - II

2.Course code: BS-202

3. Prerequisites: High School Level Physics

4. Rationale of the subject: Physics is a foundation of all core technology subjects. Study of Physics is essential for Diploma holders in engineering and technology to develop in them proper understanding of physical phenomenon, scientific temper and engineering aptitude. Curriculum of Applied Physics includes fundamental concepts used in industrial applications. So, physics is taught in the 1st and 2nd semester in all disciplines of Diploma Engineering.

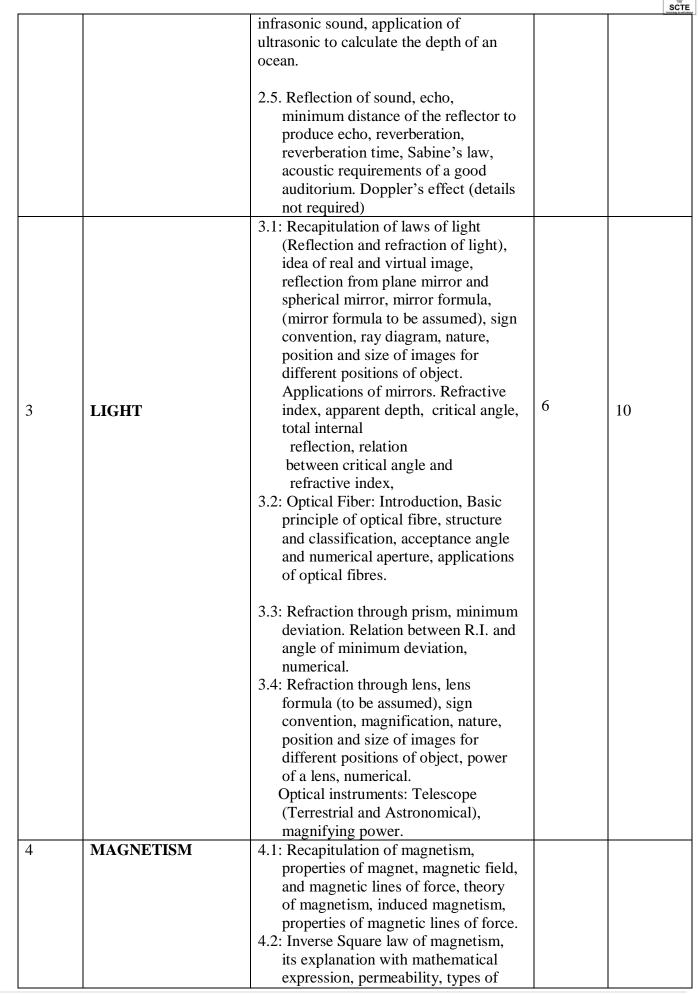
5. LEARNERS OBJECTIVES: After completion of the course learners will be able to:

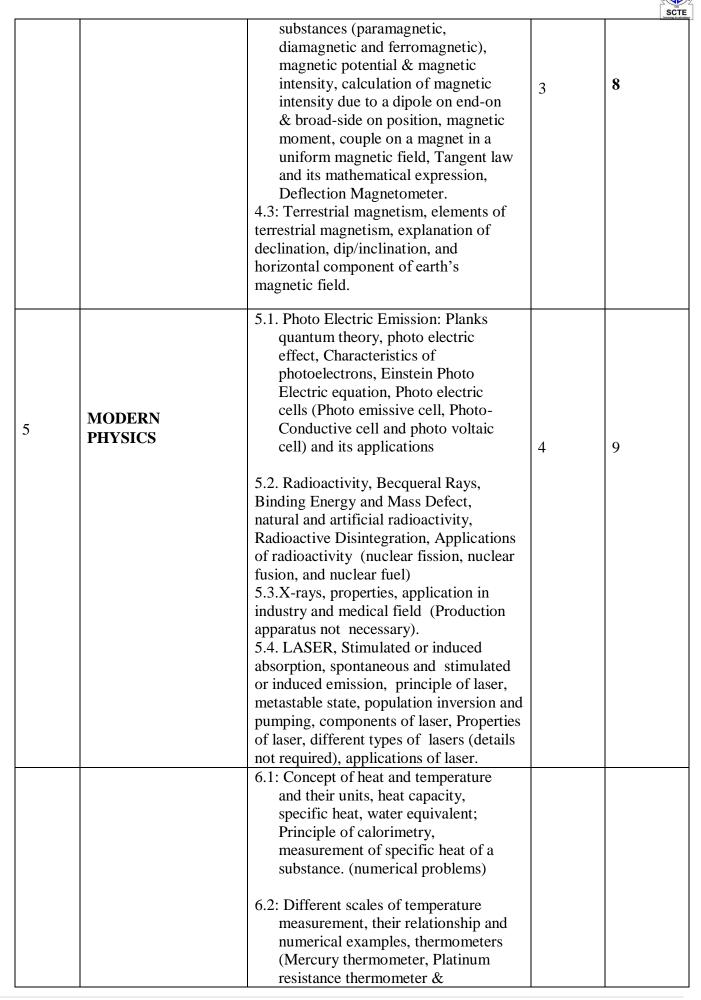
- a) learn and understand different physical quantities.
- b) learn and understand different laws of light, magnetism,
- c) understand about properties of matter, transmission of heat, wave and oscillation.
- d) learn about photo electric effect, radioactivity, X-ray and laser.
- e) tackle engineering problems in their chosen area of application.
- 6. Course outcome: After completion of the course, students will be able to:
 - C.O.1: apply core concept in materials like properties of matter, heat transmission etc. for different engineering tasks.
 - C.O.2: identify different factors affecting acoustical planning of buildings
 - C.O.3. Develop a comprehensive understanding of the fundamental laws of light, including reflection, refraction, total internal reflection and their applications in optical fibre.
 - C.O.4. apply the core concept of magnetism.
 - C.O.5: use the properties of laser, X-rays, Becquerel rays and photoelectric effect for various Engineering applications.
- 7. Teaching Scheme (in hours):

Theory		Practical	Total	
Lectures	Tutorial	Class Test		
30	30	3	30	93

8. Teaching scheme (in hours)/ week

Lectures	Tutorial	Practical	Credit point	
2	1	0	3	


9. Examination Scheme:


Theory				Total Marks
Examination		Internal Assessment		
Full Marks	Pass Marks	Full Marks	Pass Marks	100
60	24	40	16	

10. DETAILED COURSE CONTENTS:

Chapter	Title of Chapter	Topics and Sub-topics	Teaching Hours	Marks
	PROPERTIES OF MATTER	1.1 Elasticity, definition of deforming force, restoring force, Elastic and plastic body stress and strain and their types, modulus of elasticity (Young's modulus, Bulk modulus and Rigidity modulus) and their units; Hooke's law, significance of stress-strain curve. (numerical problems)		
1		1.2 Definition of thrust, pressure and their units, pressure inside a liquid, Pascal's law of transmission of liquid pressure and its application to Hydraulic press and Hydraulic brakes. Buoyancy, Archimedes principle, density and specific gravity (relative density) their relation. Determination of Specific gravity, numerical problems.	4	9
		1.3 Surface Tension: Definition and its units,Viscosity: Definition, coefficient of viscosity and its unit.		
2	WAVE AND OSCILLATION	 2.1: Periodic motion, oscillatory motion, Definition of Simple harmonic Motion, Its geometrical representations, Expression for amplitude, velocity, acceleration, time period, frequency etc. Simple Pendulum, expression for its time (derivation not required), second's pendulum. Free and forced vibrations, Resonance. 		
		 2.2: Wave motion, Characteristics, Types of wave motions (longitudinal and transverse waves) with examples, Definitions of parameters related to wave motion (time period, frequency, amplitude, wavelength, wave velocity) and their relations. Stationary wave, properties of stationary wave, Difference between progressive and stationary wave. 	6	10
		 2.3. Propagation of sound, Newton's formula velocity of sound in air and Laplace's correction, factors affecting velocity of sound in air. 2.4. Audible range, ultrasonic and 		

				SCTE
		Pyrometer) basic idea.	6	12
	HEAT AND	 6.3: Modes of heat transfer (conduction, convection, and radiation with examples), thermal conductivity, its unit. 6.4: Change of state of a body, 	0	12
6	THERMODYNAMICS	Fusion/melting, laws of fusion,		
		effect of pressure on melting point,		
		Regelation, Vaporization, boiling		
		point, Laws of ebullition, latent heat,		
		numerical problems. Evaporation,		
		difference between vaporization and		
		evaporation, factors on which rate of		
		evaporation depend.		
		 6.5: Expansion of solids, liquids and gases; coefficient of linear, areal and cubical expansions and relation amongst them (deduction not required), expansion of liquid, coefficient of real and apparent expansion, Anomalous expansion of water (experiment determination not necessary). Expansion of gases, gas laws, Boyle's law, verification of Boyle's law 		
		6.6: Thermodynamic system, Zeroth law of thermodynamics, Thermal equilibrium, Concept of heat; internal energy, First and Second law of thermodynamics significances and limitations, basic idea of heat engines.		
7	Nano physics	7.1. Introduction to nanomaterial, nature and types of nanomaterials and their applications.	1	2

11. Distribution of Marks:

Chapter				Type of Qu	lestion	Total
No.	Chapter Title	Hours	Objective type Compulsory	Short Question	Descriptive Question/numerical	Marks
1	Properties of matter	4	3	2	4	9
2	Wave and Oscillations	6	3	1	6	10

3	LIGHT	6	2	2	6	10
4	MAGNETISM	3	2	2	4	8
5	MODERN PHYSICS	4	2	2	5	9
6	Heat and Thermodynamics	6	2	3	7	12
7	Nano physics	1	1	1	-	2
	TOTAL:	30	15	13	32	60

12. DETAILED TABLE OF SPECIFICATIONS FOR THEORY

N O. Sr.	Торіс	OBJECTIVE TYPE			SHORT ANSWER TYPE			ESSAY TYPE							
		K	С	A	Т	K	С	A	HA	Т	K	С	A	H A	Т
1	Properties of matter	1	1	1	3	1	1	-	-	2	1	1	2	-	4
2	Wave and Oscillations	1	1	1	3	-		1	-	1	2	1	3	-	6
3	LIGHT	1	1	-	2	1	-	1	-	2	1	2	3	-	6
4	MAGNETISM	1	1	-	2	1	-	1	-	2	1	1	2	-	4
5	MODERN PHYSICS	1	-	1	2	1	1	-	-	2	2	1	2	-	5
6	Heat and Thermodynamics	1	-	1	2	1	1	1	-	3	2	2	3	-	7
7	Nano physics	1	-	-	1	-	-	1	-	1	-	-	-	-	-

K=Knowledge, C= Comprehension, A= Application, HA= Higher than application ((analysis,

synthesis, Evaluation) and T=Total.

13. TABLE OF SPECIFICATIONS FOR THEORY

Sl. No:	Topics (a)	Time allotted in hours (b)	Percentage Weightage (c) %	K	С	А	НА
1	Properties of matter	4	13.33	4	3	3	
2	Wave and Oscillations	6	20	2	2	5	
3	LIGHT	6	20	3	3	4	
4	MAGNETISM	3	10	3	2	3	
5	MODERN PHYSICS	4	13.33	3	3	3	
6	Heat and Thermodynamics	6	20	4	3	5	

7	Nano physics	1	3.33	1	-	1	
	TOTAL	30 □ b	100%	20	16	24	

K=Knowledge, C= Comprehension, A= Application, HA= Higher than application (analysis, synthesis, Evaluation)

Suggested learning Resource:

A. Book list:

Sl.	Title	Author	Publisher
No.			
Ι	Modern Approach to Physics	Dilip Sarma,	Kalyani Publishers- New
	Part I & II	N G Chakraborty, K	Delhi
		N Sharma	
2	Applied Physics Part I	Manpreet Singh,	S K Kataria & Sons-
		Dr. Major Singh,	New Delhi
		Mrs. Hitashi Gupta	
3	Applied Physics Part II	Manpreet Singh,	S K Kataria & Sons-
		Dr. Major Singh,	New Delhi
		Mrs. Hitashi Gupta	
4	Basic Applied Physics	R K Gaur	Dhanpat Rai Publication-
			New Delhi
5	Physics- Std XI, Std XII	-	HSC board/CBSE Board
6	Concept of physics Part I & II	H.C Verma	Bharati Bhawan-New
			Delhi
7	Introduction to nano	C. P. Poole, Jr.,	Wiley- Interscience.
	technology	and Frank. J.	
		Owens,	

B. Websites:

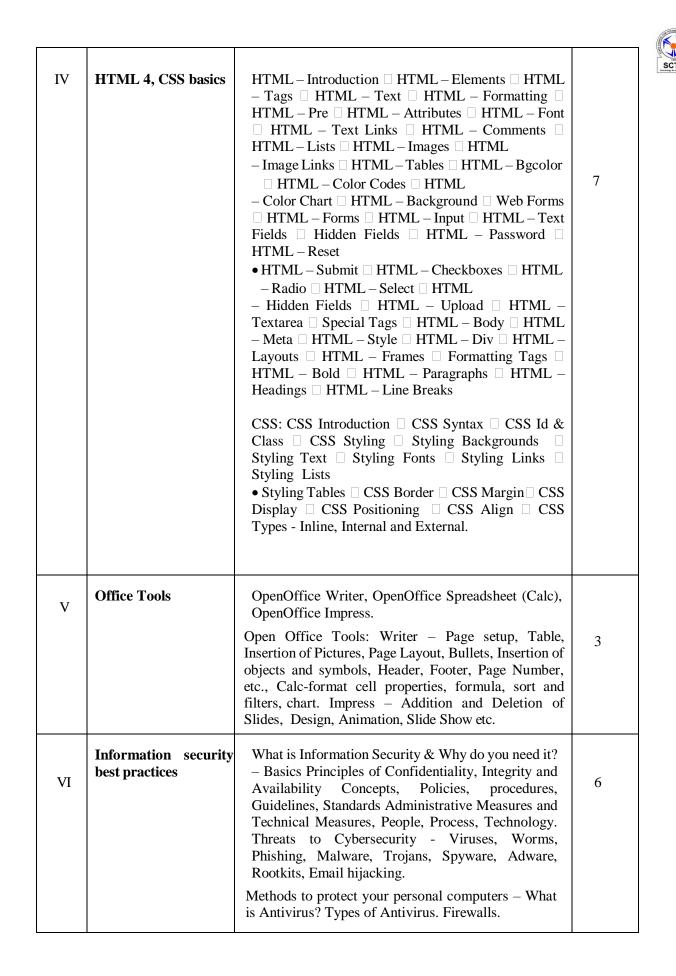
I.<u>http://hyperphysics.phy-astr.gsu.edu/</u> C:\Users\HP\Downloads\II.<u>http://physics.info</u>

C. By using Models, Video etc.

Course Code : ES – 202 Credits- 2 (L: 2, T: 0, P: 0)

Course Objectives:

- This course is intended to make new students comfortable with computing environment
- Learning basic computer skills
- Learning basic application software tools
- Understanding Computer Hard-ware and Cyber security awareness


Course outcomes (Theory):

At the end of the course student will be able to

- CO 1 Explain the basic components and functions of computer hardware and software.
- CO 2 Solve problems related to number systems.
- CO 3 Design static web pages using HTML and CSS.
- CO-4 Familiarize with Open office writer, calc and Impress.
- CO-5 Explain the different threats and security measures related to protection of computer systems.

Detailed Course Content

Unit	Unit Title	Content	Hours
Ι	Introduction to computer systems: Definition of Computer System, Block Dia Computer System. Component of Co System - Hardware and Software. H components – CPU, Memory (types), Units (types), Key-board, Mouse, HDD, S other Peripheral Devices.		7
		Software: Types of Software – Application Software, System Software and Utilities Software. Overview of Operating Systems - What is an OS? OS Functions, Brief history on Evolution of OS. Types of OS. OS Processing – (Batch, Multi- programming, Multitasking, Real-time, Timesharing), Operating System Structures.	
П	Basics of Number system and codes	Binary, octal, hexadecimal and decimal Number systems and their inter conversion, Different types of Codes - BCD Code, Gray Code, ASCII Code, EBCDIC Code, Unicode, ISCII.	4
Ш	Basic Internet skills	Understanding browser, types and efficient use of search engines, IP address, http, https, Cookies, how to delete browser data, downloads, emails and Awareness about Digital India portals (state and national portals) and college portals.	3

Teaching Scheme

Teaching Scheme						
Lecture	Tutorial	Total				
2	-	2				

Total No. Of classes	30
Lecture	30
Tutorial	-

Assessment Scheme

	Internal	ESE	Total
Full Marks	40	60	100
Pass Marks	16	24	40

Distribution of marks

Unit	Unit Title	Type of Que	estion		Total
No.					marks
		Objective	Short	Descriptive	
	Introduction to computer				
Ι	systems	4	5	5	14
	Basics of Number system and				
II	codes	2	2	4	08
III	Basic Internet skills	1	2	3	06
IV	HTML 4, CSS basics	4	5	5	14
V	Office Tools	1	2	3	06
	Information security best practices	3	4	5	
VI					12
	Total	15	20	25	60

References:

- R.S. Salaria, Computer Fundamentals, Khanna Publishing House
- Introduction to IT Systems (with Lab Manual) By Prashant Joshi.
- Introduction to IT Systems By P. Mondal (Bhagabati Publication)
- Web Design With HTML & CSS by Prem Kumar
- HTML & CSS Easy learn in 7 Days Paperback by <u>Albert Irudaya Raj</u>
- Mastering HTML, CSS & JavaScript Web Publishing by Laura Lemay
- HTML and CSS: Design and Build Websites by Jon Duckett

4. <u>Course Title: Fundamentals of Electrical and</u> <u>Electronics Engineering</u>

Course Code	:	ES 204
Course Title	:	Fundamentals of Electrical and Electronics Engineering
Number of Credits	:	3 (L: 2, T: 1, P: 0)
Prerequisites	:	NIL
Course Category	:	ES

Aim:

To equip students with fundamental knowledge of electrical and electronic concepts, necessary parts, and circuit analysis methods so they can comprehend and know how basic systems work and get ready for more complex engineering coursework.

Course Objectives:

- To give students a foundational understanding of the various electrical and electronic engineering concepts and elements,
- To provide information on active and passive electronic components, signals, digital electronics, and their uses,
- To assist them in navigating the principles and applications of electrical and electronics engineering in various industrial processes.

COURSE OUTCOME (CO):

On completion of the course, the student will be able to:

CO1- Understand the different electrical and electronics circuit elements, signal waveform, logic gates.

CO2- Classify different electrical and electronic circuits.

CO3– Solve basic problems related to electrical circuits and digital electronics.

CO4- Compare the various types of wiring systems and analyze different digital logic gates.

Course Content:

]	ELECTRICAL ENGINEERING	
Chapter No.	Chapter Title	Course Content	Duration Hours
1.	Fundamentals of Power generation Sources	A brief idea on: Conventional Power- Hydro, Thermal and Nuclear power generation Non-Conventional Power- Solar, Wind, Ocean Energy, Bio-Mass and Geo-thermal	02
2	Electric and Magnetic Circuits	Ohm's Law, Definition of EMF, Current, Potential Difference, Power and Energy; M.M.F, magnetic force, permeability, Idea on hysteresis loop, reluctance, leakage factor and BH curve; Analogy between electric and magnetic circuits.	05
3	AC circuits	Introduction to Cycle, Frequency, Periodic time, Amplitude, Angular velocity, RMS value, Average value, Form Factor, Peak Factor, impedance, phase angle, and power factor; j-	08

		operator; Mathematical and phasor	
		representation of alternating emf and current;	
		Basics of A.C circuits (purely R, L, C, R-L	
		series, R-C series, R-L-C series and parallel	
		circuits); Power in A. C. Circuits, Power,	
		Voltage and Impedance triangle.	
4	Transformer and	General construction and working principle of	06
•	Electrical Machines	transformer; Core and Shell type transformers;	00
	Lieetheur Machines	Transformation ratio; Auto- transformers;	
		Construction and Working principles of DC &	
		AC machines	
5	House wiring	Introduction to Internal House Wiring; Methods	04
5	House withing	of house wiring and comparison; Wires and	04
		Cables; Electrical hazards and Safety measures.	
		ECTRONICS ENGINEERING	
6	Basics of Electronics	Energy band diagram, intrinsic and extrinsic	08
0	basics of Electronics		08
		semiconductor, doping, P- type & N-type	
		semiconductor, PN junction diode, forward bias	
		& reverse bias characteristics of PN junction	
		diode, introduction to half and full wave rectifier	
		circuits, filter circuits.	
		Transistor: Physical construction of bipolar PNP	
		and NPN transistor, biasing circuit configuration	
		(CE, CB, CC) and comparison. Elementary idea	
		of LED, LCD, 7-segment display	
7	Fundamentals of	Difference between Analog and Digital signals,	05
	Digital Electronics	Introduction to Boolean Algebra, Electronic	
		Implementation of Boolean Operations, Logic	
		Gates, Introduction to Combinational circuit,	
		Sequential circuit and Storage elements (Flip	
		Flops & Counters)	
8	Micro-electronic	Introduction to Integrated Circuits – advantages	04
	Technology	and disadvantages, Uses of IC.	
		Types of ICs-Linear and Digital, Monolithic and	
		Hybrid. Overview of IC manufacturing process –	
		Wafer processing, Photolithography, Etching,	
		Ion Implementation, Doping, Testing,	
		Packaging, packaging types	
9	Class Test		03

Distribution of Marks/ Table of specifications TABLE OF SPECIFICATIONS FOR THEORY

Sl. No	Topic (a)	Time allotted in hours (b)	Percentage Weightage (c)	К	С	Т
1	Fundamentals of Power generation Sources	02	01	2	-	2
2	Electric and Magnetic Circuits	05	11	5	3	8
3	AC circuit	08	18	8	4	12

4	Transformer and Machines	06	13	5	3	8
5	House wiring	04	9	3	3	6
6	Basics of Electronics	08	18	8	3	11
7	Fundamentals of Digital Electronics	05	11	6	2	8
8	Micro-electronic Technology	04	09	4	1	5
9	Class test	3	7	-	-	-
	Total	45	100	41	19	60

K = Knowledge C = Comprehension

A = Application

HA =Higher Than Application (Analysis, Synthesis, Evaluation)

Details Table of Specification for Theory

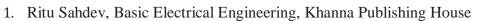
Sr.	Торіс	Object	tive T	ype	Shor	t Answ	er Type	Long	Long Answer Type			
No	(a)	K	C	Т	K	C	Т	K	C	Т		
1	Fundamentals of Power generation Sources	-	-	-	2	-	2	-	-	-		
2	Electric and Magnetic Circuits	2	-	2	2	-	2	-	4	4		
3	AC circuit	2	-	2	4	2	6		4	4		
4	Transformer and Machines	2	-	2	-	2	2	4	-	4		
5	House wiring	2	-	2	2	2	4	4	-	4		
6	Basics of Electronics	2	-	2	4	-	4	-	5	5		
7	Fundamentals of Digital Electronics	2	-	2	2	-	2	-	4	4		
8	Micro-electronic Technology	3	-	3	-	2	2	-	-	-		
	Total	15	00	15	16	08	24	08	17	25		

K = Knowledge C = Comprehension

A = Application

T = Total

N.B.:- 1. The question pattern will be as per the instruction of SCTE or as per existing rules.


2. The objective type questions may be in the form of multiple choice, fill up the blanks,

write in one sentence and match the following type.

Suggested Implementation Strategies:- Teacher will use Black board, OHP, LCD Projector,

Smart board, Video etc for effective teaching learning process .

References:

- 2. Mittle and Mittal, Basic Electrical Engineering, McGraw Education, New Delhi, 2015, ISBN : 978-0-07-0088572-5
- 3. Saxena, S. B. Lal, Fundamentals of Electrical Engineering, Cambridge University Press, latest edition ISBN : 9781107464353
- 4. Theraja, B. L., Electrical Technology Vol I, S. Chand Publications, New Delhi, 2015, ISBN: 9788121924405
- 5. Theraja, B. L., Electrical Technology Vol II, S. Chand Publications, New Delhi, 2015, ISBN: 9788121924375
- 6. Jegathesan, V., Basic Electrical and Electronics Engineering, Wiley India, New Delhi, 2015, ISBN : 97881236529513
- 7. Sedha, R.S., A text book of Applied Electronics, S.Chand, New Delhi, 2008, ISBN-13: 978-8121927833
- 8. Malvino, Albert Paul, David, Electronics Principles, McGraw Hill Education, New Delhi,2015, ISBN-13: 0070634244-978
- 9. Mehta, V.K., Mehta, Rohit, Principles of Electronics, S. Chand and Company, New Delhi, 2014, ISBN-13-9788121924504

5. <u>Course Title: Engineering Mechanics</u>

Course Code	ES - 2	ES - 206								
Category	Engir	Engineering Science Course								
Course Title	Engir	ngineering Mechanics								
	L	Т	Р	Credits, C						
Scheme and Credits	2	2 1 0 3 Semester-II								
Pre-requisites (if any)	Physi	cs, Ma	thema	tics, Engineer	ing Drawing					

LEARNING OBJECTIVES:

At the end of the lessons the students will be able to:

LO1	Calculate magnitude and direction of the resultant of coplanar concurrent and non- concurrent forces applying parallelogram law, method of resolution of force.
	Establish triangle law of force, polygon law of force by the aid of Bow's notation, space
	diagram, vector diagram for calculating graphically magnitude and direction of coplanar
LO2	concurrent and non concurrent forces.
	Compute moment, couple and find the position of the resultant force analytically by
	applying Varignon's theorem for coplanar concurrent and non-concurrent forces and
LO3	graphically for parallel forces.
	Construct free body diagram of a body to compute equilibrant, individual forces for a
TOL	system of coplanar concurrent and non-concurrent forces analytically and graphically by
LO4	applying the Lami's theorem, algebraic conditions of equilibrium
	Determine support reactions of simply supported beam with vertical point load, inclined
	point load, uniformly distributed load and uniformly varying load by analytical and
LO5	graphical methods.
LO6	Examine truss with the aid of method of section, method of joints and graphical method.
	Compute centroid and centre of gravity of plane lamina, composite sections of not more
LO7	than three geometrical figures and composite solids of not more than two simple solids.
	Compute moment of inertia of simple geometrical figure and composite sections, section
LO8	modulus, radius of gyration by applying general formula, method of integration, theorem
	of parallel and perpendicular axis.
	Determine friction, co-efficient of friction and employ Coulomb's law of friction to
LO9	study equilibrium of a body on a rough horizontal plane, rough inclined plane, ladder
L09	friction and wedge friction
LO10	Establish the law of machine and compute reversibility, irreversibility, M.A, V.R and
LUIU	efficiency of various simple lifting machines.

CO1	Solve simple engineering problems by making use of the concepts and principles of statics as applied to coplanar concurrent, non-concurrent and parallel forces and force system.
CO2	Solve simple problems on equilibrium of a body, static friction, ladder friction and wedge friction under the influence of coplanar concurrent and non-concurrent forces as applicable by utilizing the concepts of free body diagram, Lami's theorem, algebraic conditions of equilibrium, Coulomb's law of friction or suitable principles of statics.
CO3	Analyze a truss by applying method of joints and section and also calculate support reactions of a beam subjected to various load conditions.
CO4	Identify the centroid or centre of gravity of simple and composite plane lamina or solids and calculate the moment of inertia of simple and composite plane lamina by applying suitable methods, law, principles and theorems.
CO5	Apply the concepts and principles of lifting machine in solving problems related to simple machines, law of machine and simple lifting machines.

<u>COURSE OUTCOMES</u>: On successful completion of the course the students will be able to:

Detailed Syllabus:

Units	Detailed Contents	Contact Hour
UNIT-I	Force vector representation, System of a force, Principle of Transmissibility, Resolution and compounding of forces, Resultant of coplanar-concurrent forces (Parallelogram law of forces,	5
	 Principle of resolved parts ,Triangle law of forces and Polygon law of forces), Resultant of coplanar non-concurrent forces and parallel forces (analytical and graphical method), Bow's notation, Space diagram, Vector diagram, Funicular polygon or string polygon, Moment of force, graphical representation of moment, Varignon's theorem-law of moments, Principle of moments, Simple lever, Couple, Properties of couple (simple numerical problems from UNIT-I) 	
UNIT-II	Equilibrium, Free body diagram, equilibrant, Relation between resultant and equilibrant, Algebraic conditions of equilibrium (force law of equilibrium and moment law of equilibrium), Principles of force equilibrium- Two force, Three force and Four force principle, Equilibrium of coplanar concurrent and non concurrent force system- analytical and graphical method of analysing equilibrium, Lami's theorem and its application for various engineering problems,	4

UNIT-III	Types of beams (Simple, Cantilever, Propped cantilever, Fixed or Encastre, Continuous and Overhanging beam), Statically determinate and indeterminate beams- definitions only, Supports (Simple, Hinged, Roller and Fixed support), Loads acting on beam (vertical and inclined point load, uniformly distributed load, uniformly varying load), Beam reactions for simply supported beam with or without overhang- engineering problems subjected to point load and combination of point load and uniformly distributed load, Beam reactions graphically for simply supported beam with vertical point load- simple numerical problems on analytical and graphical methods, Plane truss and Space truss (definition only), Assumptions in plane truss analysis, Relationship between number of joints and members in simple truss, External and internal redundancy, Method of joints analysis, Method of sections analysis, Graphical methods of truss analysis- simple numerical problems by method of joints and section only.	13
UNIT-IV	Centroid and Centre of Gravity, Centroid of geometrical plane figure (square, triangular, rectangular, circle, semicircle lamina and composite figure composed of not more than three geometrical figure, Centre of gravity of simple solids (cube, cuboid, cone, cylinder, sphere, hemisphere) and composite solids composed of not more than two simple solids, Moment of Inertia, Derivation of general formula for determination of moment of inertia for area and mass, Section modulus, Radius of gyration, Theorem of Parallel and perpendicular axes, Moment of inertia of simple geometrical figure (square, rectangle, circle, triangle) and composite sections .	8
UNIT-V	Definition of friction, Static and dynamic friction, Coulomb's Laws of friction, Types of friction, , Limiting friction, Coefficient of friction, Angle of friction, Angle of repose, Cone of friction, Equilibrium of bodies on level surface subjected to a force parallel and inclined to the plane, Equilibrium of bodies on an inclined plane subjected to a force parallel to the plane only, Simple engineering problems on ladder friction and wedge friction.	8
UNIT-VI	Machine, Simple machine and compound machine, Basic concepts and definition, Derivation of relation between M.A, V.R and efficiency, Ideal machine, Derivation of relation between M.A and V.R in ideal machine, Reversible and irreversible machine, Derivation of conditions for a machine to be reversible and irreversible, Maximum mechanical advantage and efficiency, Compound efficiency, Simple numerical problems on the concepts and topics on lifting machine, Velocity ratio of Simple wheel and axle, differential wheel and axle , worm and worm wheel, Simple screw jack, Single purchase and double purchase crab winch, Weston's differential pulley block, First system of pulleys- simple numerical problems	
Total Contact I	Hours	45

	Table of Specification for Engineering Mechanics															
S1 No	Contact	Units	Ol	ojecti	ve	:	Short T	Answ ype	er		Lon	g Ans	swers	Туре		Total
SI No Hours	Units	R	U	A P	R	U	A P	A N	R	U	A P	A N	E	С	Marks	
1	3	Unit I	0	1	1	0	2	0	0	0	0	5	0	0	0	9
2	3	Unit II	0	1	0	2	2	0	0	0	0	4	0	0	0	9
3	7	Unit III	0	1	1	0	2	2	0	0	0	6	0	0	0	12
4	7	Unit IV	0	1	1	0	2	0	0	0	0	6	0	0	0	10
5	4	Unit V	0	1	0	0	2	0	0	0	0	5	0	0	0	8
6	6	Unit VI	0	1	1	0	2	2	0	0	0	6	0	0	0	12
	Total Marks			6	4	2	12	4	0	0	0	32	0	0	0	60

NB:R: Remember, U: Understand, AP: Apply, AN: Analyze, E: Evaluate, C: Create

		Annexure-I (Engineering Mechanics)											
Sl No.	Units	Time Allotted (Hrs)	Percentage Weightage	R	U	AP	AN	E	С	Total Marks			
1	Unit I	5	15.00%	0	3	6	0	0	0	9			
2	Unit II	4	15.00%	2	3	4	0	0	0	9			
3	Unit III	13	20.00%	0	3	9	0	0	0	12			
4	Unit IV	8	16.66%	0	3	7	0	0	0	10			
5	Unit V	8	13.33%	0	3	5	0	0	0	8			
6	Unit VI	7	20.00%	0	3	9	0	0	0	12			
Tot	al Marks			2	18	40	0	0	0	60			

NB:R: Remember, U: Understand, AP: Apply, AN: Analyze, E: Evaluate, C: Create

<u>Reference Book List</u>:

	Book Name	Author Name	Publishing House, Volume, ISBN
<u>No.</u>	Engineering Mechanics, Statics and Dynamics	J.L. Meriam and L.G. Kraige	John Wiley & Sons, Inc., 7 th edition, Vol I &II, 2012, ISBN: 978-0-470-61473-0 and 9780470614815
2	Engineering Mechanics	S.P. Timoshenko, D.H. Young and J.V. Rao	Tata McGraw Hill, New Delhi, 5 th edition, 2017, ISBN 9781259062667
3	Engineering Mechanics: Statics and Dynamics	R.C. Hibbler	Pearson publication, 14 th edition, 2015, ISBN978- 0133915426
4	Engineering Mechanics	K.L. Kumar and Veenu Kumar	Tata McGraw Hill, New Delhi, 4 th edition, 2017, ISBN 978- 0070681811
5	Engineering Mechanics: Statics and Dynamics	I.H. Shames and G.K.M. Rao	Pearson publication, 4 th edition, 2011, ISBN 978- 8177581232
6	A Text Book of Engineering Applied Mechanics	Dr S.N. Saluja	Satya Prakashan, New Delhi
7	A Text Book of Applied Mechanics	R.K.Rajput	Laxmi Publications (P) Ltd., New Delhi
8	Engineering Mechanics	S.Ramamrutham	Dhanpat Rai Publishing Company (P) Ltd., New Delhi
9	A Text Book of Engineering Mechanics	R.S.Khurmi	S. Chand & Company Limited, New Delhi

6. Course Title: Applied Physics Lab-II

COURSE TITLE: APPLIED PHYSICS LAB-II

COURSE CODE: BS-207 Total Marks:100 Practical Examination:40 Practical Sessional Marks:60

Learning Objectives: The main objectives are:

- (i) To provide an experimental foundation for the theoretical concepts introduced in the theory class.
- (ii) Demonstrate the principles taught in the class.
- (iii) Develop the habit of honesty, patience and teamwork.

Course Outcomes: On completion of this practical course, the students will be able to:

- CO1: demonstrate the laws of light, find refractive index of material and focal length of lense.
- CO2: find out magnetic poles and draw magnetic lines of force of bar magnet.
- CO3: apply different apparatuses to find the values of different physical quantities (acceleration due to gravity, specific gravity, atmospheric pressure, water equivalent, velocity of sound and frequency of tuning fork).

Examination scheme:

	Pra	Total Marks		
Practical Test		Internal Assessment		
Full Marks Pass marks		Full Marks	Pass Marks	100
40 16		60	24	

Chapter Title	Content		
Properties of Liquid	1.Measurement of Specific gravity of solid, liquid, using Nicolson		
	hydrometer, Hare's apparatus and specific gravity bottles etc.		
Simple Harmonic	2.To determine the value of acceleration due to gravity (g) of a place		
Motion	with Simple pendulum.		
Wave & Sound	3. To measure the velocity of sound in Resonance tube.		
	4. To determine the frequency of a tuning fork using a Sonometer.		
Light	5.0 To verify the laws of reflection using a plane mirror and to study the characteristics of image formed.		
	6.0 To determine the refractive index of the material of the glass slab by pin method.		
	7.0 To determine the focal length of a convex lens by U-V method.		
	8.0 To determine the focal length of a convex lens by plane mirror method.		

	Training for self-reliance
	9.0 To draw I-D curve and to determine the refractive index of the
	material of a prism.
MAGNETISM	10.0 To locate the poles of a bar magnet and to measure the
	magnetic length.
	11. To plot magnetic lines of force of a bar magnet with north pole
	pointing north and to locate the neutral point/to plot magnetic lines
	of force of a bar magnet with south pole pointing north and to locate
	the neutral point.
Heat	12. To determine the atmospheric pressure by using Boyle's law
	apparatus.
	13. To determine water equivalent of a calorimeter by method of
	mixture.

Suggested learning Resource:

D. Book list:

Sl.	Title	Author	Publisher
No.			
Ι	Modern Approach to Physics	Dilip Sarma,	Kalyani Publishers- New
	Part I & II	N G Chakraborty, K	Delhi
		N Sharma	
2	Applied Physics Part I	Manpreet Singh,	S K Kataria & Sons-
		Dr. Major Singh,	New Delhi
		Mrs. Hitashi Gupta	
3	Applied Physics Part II	Manpreet Singh,	S K Kataria & Sons-
		Dr. Major Singh,	New Delhi
		Mrs. Hitashi Gupta	
4	Basic Applied Physics	R K Gaur	Dhanpat Rai Publication-
			New Delhi
5	Physics- Std XI, Std XII	-	HSC board/CBSE Board
6	Concept of physics Part I & II	H.C Verma Bharati Bhawan-N	
			Delhi
7	Introduction to nano	C. P. Poole, Jr.,	Wiley- Interscience.
	technology	and Frank. J.	
		Owens,	

E. Websites:

I.<u>http://hyperphysics.phy-astr.gsu.edu/</u> <u>C:\Users\HP\Downloads\II.http://physics.info</u>

F. By using Models, Video etc.

7. Course Title: Introduction to IT Systems Lab

Course : Introduction to IT Systems Lab Course Code: ES-208 Credits -2 (L: 0, T: 0, P: 4)

Course outcomes:

- At the end of the course student will be able to
- 1: Search information effectively.
- 2: Connect peripherals and install device drivers.
- 3: Create static web pages using HTML and CSS
- 4: Create documents, spreadsheets and presentations.
- 5: Implement basic security measures to protect computer system.

Course Content:

S1. No.	Topics for Practice
1	Browser features, browsing, using various search engines, writing search queries
2	Visit various e-governance/Digital India portals, understand their features, services offered
3	Read Wikipedia pages on computer hardware components, look at those components in lab, identify them, recognize various ports/interfaces and related cables, etc.
4	Install Linux and Windows operating system on identified lab machines, explore various options.
5	Connect various peripherals (printer, scanner, etc.) to computer, explore various features of peripheral and their device driver software.
6	Practice HTML tags-(HTML, HEAD, TITLE, BODY, TABLE, UL, OL, FORM, IMG, A, FONT etc. and their attributes). CSS Syntax CSS Id & Class CSS Styling Styling Backgrounds Styling Text Styling Fonts Styling Links Styling Lists Styling Tables CSS Border CSS Margin CSS Display CSS Positioning CSS Align CSS Types - Inline, Internal and External. Make your own Webpage.
7	Open Office Tools: Writer – Page setup, Table, Insertion of Pictures, Page Layout, Bullets, Insertion of objects and symbols, Header, Footer, Page Number, etc., Calc-format cell properties, formula, sort and filters, chart. Impress – Addition and Deletion of Slides, Design, Animation, Slide Show etc.
8	Explore security features of Operating Systems and Tools, try using them and see what happens. Explore the setting of Antiviruses and Firewalls.

This is a skill course. More you practice, better it will be.

References:

- R.S. Salaria, Computer Fundamentals, Khanna Publishing House
- Introduction to IT Systems (with Lab Manual) By Prashant Joshi.
- Introduction to IT Systems By P. Mondal (Bhagabati Publication)
- Web Design With HTML & CSS by Prem Kumar
- HTML & CSS Easy learn in 7 Days Paperback by Albert Irudaya Raj
- Mastering HTML, CSS & JavaScript Web Publishing by Laura Lemay
- HTML and CSS: Design and Build Websites by Jon Duckett

8.Course Title: Fundamentals of Electrical and Electronics Engineering Lab

Course Code	:	ES 209
Course Title	:	Fundamentals of Electrical and Electronics Engineering Lab
Number of Credits	:	1 (L: 0, T: 0, P: 2)
Prerequisites	:	NIL
Course Category	:	ES

Learning Objective:

The main objectives are:

- (i) To provide an experimental foundation for the theoretical concepts introduced in theory classes.
- (ii) Demonstrate the principles taught in the classes.

Course (Practical) Outcomes:

After successful completion of this course students will able to

CO1: Identify and use different electrical and electronics instruments

CO2: Apply and examine the theoretical knowledge to perform basic electrical and electronics experiments

S. No.	Name of Experiments	Approx. Hrs.	Electrical (EL) / Electronics (ET)	COs
1	Measure voltage, current and power in 1- phase circuit with resistive load.	02	EL	CO1, CO2
2	Measure voltage, current and power in R-L series circuit.	02	EL	CO1, CO2
3	Determine the transformation ratio (K) of 1- phase transformer.	02	EL	CO1, CO2
4	Connect single phase transformer and measure input and output quantities.	02	EL	CO1, CO2
5	Study the different parts of DC machines	02	EL	CO1
6	Identify and draw the figure of various wiring materials	02	EL	CO1, CO2
7	Identify various active and passive electronic components in the given circuit	02	EL	CO1
8	Connect resistors in series and parallel combination on bread board and measure its value using digital multimeter	02	ET	CO1, CO2
9	Connect capacitors in series and parallel combination on bread board and measure its value using multimeter	02	ET	CO1, CO2
10	Determine the value of a given resistor using digital multimeter and calculate the value with colour code.	02	ET	CO1, CO2

11	Test the PN-junction diode using digital multimeter.	02	ET	CO1, CO2
12	Identify three terminals of a transistor using digital multimeter	02	ET	CO1, CO2
13	Familiarization of different types of PCB and Soldering / Desoldering Practice	02	ET	CO1, CO2
	Total	28		

References:

- 1. Ritu Sahdev, Basic Electrical Engineering, Khanna Publishing House, 2018
- 2. Mittle and Mittal, Basic Electrical Engineering, McGraw Education, New Delhi, 2015, ISBN : 978-0-07-0088572-5
- 3. Saxena, S. B. Lal, Fundamentals of Electrical Engineering, Cambridge University Press, latest edition ISBN : 9781107464353
- 4. Theraja, B. L., Electrical Technology Vol I, S. Chand publications, New Delhi, 2015, ISBN: 9788121924405
- 5. Theraja, B. L., Electrical Technology Vol II, S. Chand publications, New Delhi, 2015, ISBN: 9788121924375
- 6. Jegathesan, V., Basic Electrical and Electronics Engineering, Wiley India, New Delhi, 2015, ISBN : 97881236529513
- 7. Sedha, R.S., A text book of Applied Electronics, S.Chand ,New Delhi, 2008, ISBN-13: 978-8121927833
- 8. Mehta, V.K., Mehta, Rohit, Principles of Electronics, S. Chand and Company, New Delhi, 2014, ISBN-13-9788121924504

Suggested software/ Learning Websites:

- a. en.wikipedia.org/wiki/Transformer
- b. <u>www.animations.physics.unsw.edu.au//jw/AC.html</u>
- $c. \underline{www.alpharubicon.com/altenergy/understandingAC.htm}$
- d. <u>www.electronics-tutorials</u>
- e. <u>learn.sparkfun.com/tutorials/transistors</u>
- f. www.pitt.edu/~qiw4/Academic/ME2082/Transistor%20Basics.pdf
- g. <u>www.technologystudent.com/elec1/transis1.htm</u>
- h. <u>www.learningaboutelectronics.com</u>
- i. <u>www.electrical4u.com</u>

9. Course Title: Engineering Mechanics Lab

Course Code	ES	ES - 210						
Category	Eng	Engineering Science Course						
Course Title	Eng	Engineering Mechanics Laboratory						
	L	Т	Р	Credits				
Scheme and Credits	0	0	2	1	- Semester-II			
Pre-requisites (if		_	_	_				
any)	vsics, m	athema	atics					

Learning Objectives:

Students will be able to:

LO1	Examine triangle law of forces graphically and calculate resultant, percentage error with the aid of Gravesand's apparatus.
LO2	Examine polygon law of forces graphically and calculate resultant, percentage error with the aid of Gravesand's apparatus or Universal Force Table.
LO3	Compare actual, analytical and graphical values of support reactions at the two ends of a simply supported beam on a Beam apparatus.
LO4	Calculate co-efficient of friction between two contact surfaces on a rough horizontal plane.
LO5	Calculate co-efficient of friction, angle of repose, mechanical advantage and efficiency of an inclined plane.
LO6	Examine the law of moments with the aid of Bell Crank Lever.
LO6	Calculate mechanical advantage, velocity ratio and efficiency of simple screw jack, worm and worm wheel, single purchase crab winch and first system of pulleys.

Course Outcomes:

On successful completion students will be able to:

CO1	Examine triangle law of forces, parallelogram law of forces and polygon law of							
CO1	forces with the aid of Gravesand's apparatus and Universal Force Table.							

CO2	Compare actual values of support reaction with analytical and graphical values of support reactions at two ends of a simply supported beam.
CO3	Calculate co-efficient of friction, angle of repose, mechanical advantage, velocity ratio of a body lying on horizontal and vertical plane.
CO4	Examine law of moment with the aid of Bell Crank Lever.
CO5	Calculate mechanical advantage, velocity ratio and efficiency of a simple lifting machine.

List of Practices:

Sl. No.	Topics For Practices	Periods (Hrs)
1	To verify triangle law of forces and parallelogram law of forces with the help of Gravesand's apparatus.	3
2	To verify the polygon law of forces with either Gravesand's apparatus or Universal Force Table.	3
3	To verify the reactions at the support of a simply supported beam	3
4	To find co-efficient of friction between two surfaces on a rough horizontal plane.	3
5	To find co-efficient of friction, angle of repose, M.A and efficiency of an inclined plane.	3
6	To verify the Law of Moments using a bell crank lever.	2
7	To find the mechanical advantage, velocity ratio and efficiency of a simple screw jack.	3
8	To find the mechanical advantage, velocity ratio and efficiency of a worm and worm wheel.	3
9	To find the mechanical advantage, velocity ratio and efficiency of a single purchase crab winch.	3
10	To find the mechanical advantage, velocity ratio and efficiency of the first system of pulleys.	3
Total P	ractices in Hrs	29

Reference Book Lists:

SI	Book Name	Author Name	Publishing House, Volume, ISBN
No. 1	Engineering Mechanics, Statics and Dynamics	J.L. Meriam and L.G. Kraige	John Wiley & Sons, Inc., 7 th edition, Vol I &II, 2012, ISBN: 978-0-470-61473-0 and 9780470614815
2	Engineering Mechanics	S.P. Timoshenko, D.H. Young and J.V. Rao	Tata McGraw Hill, New Delhi,5th edition, 2017, ISBN9781259062667
3	A Text Book of Applied Mechanics	R.K.Rajput	Laxmi Publications (P) Ltd., New Delhi
4	Engineering Mechanics	K.L. Kumar and Veenu Kumar	Tata McGraw Hill, New Delhi, 4 th edition, 2017, ISBN 978- 0070681811
5	Engineering Mechanics: Statics and Dynamics	I.H. Shames and G.K.M. Rao	Pearson publication, 4 th edition, 2011, ISBN 978-8177581232

10.Course Title: Environmental Science

Course Code	AU-20	AU-201							
Course Title	Environmental Science								
Scheme and Credits	L	Т	Р	Credits, C	Semester- II				
	2	0	0	0					
Pre-requisites	High S	High School Chemistry/Basic science							

Learning Objectives:

LO-1	Acquire knowledge for solving various engineering problems by applying ecosystem to
	produce eco – friendly products.
LO-2	Gain fundamental knowledge of air, noise, radiation, water and soil pollution control
	methods for solving domestic and industrial problems.
LO-3	To recognize relevant energy sources required for domestic and industrial applications.
LO-4	Gain skills for solving local solid and e-waste problems.

<u>Course Outcomes</u>: After the completion of the course the student will be able to understand:

CO-1	The ecosystem and terminology for solving various engineering problems applying ecosystem knowledge to produce eco – friendly products.
CO-2	The air, radiation and noise pollution along with their control measures and acts for solving domestic and industrial problems.
CO-3	The water and soil pollution along with their control measures and acts for solving domestic and industrial problems.
CO-4	Different renewable energy resources and efficient process of harvesting.
CO-5	Solid Waste Management, ISO 14000 & Environmental Management.

Detailed Course Content:

Unit	Topic/Sub-Topics	Hours
	1.0. Introduction to Environmental Studies and Ecosystems	
	1.1. Scope and importance of Environmental Science, environmental	
	components.	
	1.2. Definition, principle and scope of ecology, definition and concept of	
	Ecosystem, Structure of ecosystem, Biotic & Abiotic components.	
UNIT-I	1.3. Functions of Ecosystem: Physical (energy flow), Biological	
		5

	(food chains, food web, ecological succession), and Biogeochemical	
	(nutrient cycling) processes.	
	1.4. Types of Ecosystems - Freshwater ecosystem (Lentic and Lotic)	
	and terrestrial ecosystem (Forest, Grassland, Desert and	
	Mountain Ecosystem	
	2.0. Air, Noise and Radiation Pollution	
	2.1. Air Pollutions: Definition, types and sources of air pollution, air	
	pollutant and its types, impact of air pollution on human health,	
	environment and assets.	
	2.2. Global warming and greenhouse effect, ozone layer depletion and acid	
	rain.	6
UNIT-II	2.3. Air quality standards – NAAQS, AQI, Bharat Stage - VI Emission	-
	standards, Air pollution control measures.	
	Air quality standards – NAAQS, AQI,	
	Bharat Stage - VI Emission standards. Air pollution control measures.	
	2.4. Radiation pollution: Definition and types of radiation, sources, effects	
	and control of radiation pollution.	
	2.5 Noise pollution: Definition, types, sources of pollution,	
	measurement of pollution level, Effects of Noise pollution.	
	incustrement of pontition level, Effects of Noise pontition.	
UNIT-III	3.0. Water and Soil Pollution	
	3.1. Definition, properties and Sources of freshwater.	
	3.2. Definition, Sources of water pollution, Types of water	
	pollutants.	
	3.3. Characteristics of water pollutants, Physical, chemical and	
	biological parameters for assessment of water quality.	
	3.4. Effect of water pollution on human health and environment.	7
	3.5. Control of water pollution	
	3.6. Waste water treatment – Primary, secondary and tertiary	
	methods.	
	3.7. Soil pollution - Causes, Effects and Preventive measures of Soil	
	Pollution.	

UNIT-IV	4.0. Renewable sources of Energy	
	4.1. Definition and type of renewable energy sources.	
	4.2. Solar Energy: Basics of Solar energy. Flat plate collector (Liquid & Air).	
	Theory of flat plate collector. Importance of coating. Advanced collector.	
	4.3. Solar pond, Solar water heater, solar dryer, Solar stills.	
	 4.4. Biomass: Overview of biomass as energy source. Thermal characteristics of biomass as fuel, Anaerobic digestion. Biogas production mechanism. Utilization and storage of bio-gas. 4.5. Wind energy: Current status and future prospects of wind energy. Wind energy in India. Environmental benefits and problem of wind energy. 4.6. New Energy Sources: Need of new sources. Different types new energy sources. 4.7. Applications of (Hydrogen energy, Ocean energy resources, Tidal 	7
	energy conversion.) 4.8. Concept, origin and power plants of geothermal energy.	
	5.0. Solid Waste Management, ISO 14000 & Environmental Management	
UNIT-V	5.1. Definition and type of waste.	
	 5.2. Solid waste generation- Sources and characteristics of: Municipal and domestic solid waste, electronic waste (E-waste): Sources and types, constituents of e-wastes, recycling of e-waste and its environmental consequences, biomedical waste. Metallic wastes and Non-Metallic wastes (lubricants, plastics, rubber) from industries. 5.3. Collection and disposal of different types of solid wastes. 5.4. Waste Air quality act 2004, air pollution control act 1981, water pollution and control act1996. Noise pollution (Regulation and Control) Rules, 2000. 5.5. Environmental management in fabrication industry. ISO14000: 	5
	Implementation in industries, Benefits.	
		30

	Table of Specification for Environmental science (Theory)															
Sl	Contact	Units	Ob	jectiv	'e	Sho	ort	Ans	wer	Lor	ng Ar	iswei	rs Ty	ре		Total
No	Hours					Тур	e									Marks
			R	U	A P	R	U	A P	A N	R	U	A P	A N	Е	С	
1	5	Unit I	1	1	1	2	1	0	0	0	2	2	0	0	0	10
2	6	Unit II	1	1	1	2	1	0	0	0	2	2	0	0	0	10
3	7	Unit III	1	1	0	0	3	2	1	0	3	3	0	0	0	14
4	7	Unit IV	1	1	0	0	0	2	1	3	3	3	0	0	0	14
5	5	Unit V	1	1	1	0	2	0	1	0	3	3	0	0	0	12
	30	Total marks	5	5	3	4	7	4	3	3	13	13	0	0	0	60

NB: R: Remember, U: Understand, AP: Apply, AN: Analyze, E: Evaluate, C: Create

	Annexure-I: Environmental science (Theory)									
Sl No.	Units	Time Allotted (Hrs)	Percentage Weightage	R	U	AP	AN	E	С	Total Marks
1	Ι	5	16.67	3	4	3	0	0	0	10
2	П	6	20.00	3	4	3	0	0	0	10
3	Ш	7	23.33	1	7	5	1	0	0	14
4	IV	7	23.33	4	4	5	1	0	0	14
5	V	5	16.67	1	6	4	1	0	0	12
Total	4	30	100.00	12	25	20	03	00	00	60

Reference Book List:

Sl No	Book Name	Author Name	Publisher
1	Environmental Studies	S.C. Sharma & M.P.	Khanna Publishing House, New
		Poonia	Delhi
2	Understanding Chemistry	C.N. R. Rao	Universities Press (India) Pvt. Ltd.,
			2011
3	Elements of	O.P. Gupta,	Khanna Publishing House, New

	Environmental Pollution Control		Delhi
4	Air Pollution & Control	Keshav Kant	Khanna Publishing House, New Delhi (Edition 2018)
5	Waste Water Treatment for Pollution Control and Re-use	Arceivala, Soli Asolekar, Shyam	Mc-Graw Hill Education India Pvt. Ltd., New York, 2007, ISBN:978- 07-062099
6	Environmental Engineering Science	Nazaroff, William, Cohen, Lisa	Willy, New York, 2000, ISBN 10: 0471144940.
7	Environmental Pollution Control and Engineering	Rao, C. S.,	New Age International Publication, 2007, ISBN: 81-224-1835-X.
8	Air Pollution	Rao, M. N. Rao	Tata Mc-Graw Hill Publication, New delhi, 1988, ISBN: 0-07- 451871-8.
9	Principles of Solar Engineering	Frank Kreith, Jan F Kreider	McGraw-Hill, New York ; 1978, ISBN: 9780070354760.
10	Fundamentals of renewable energy processes	Aldo Vieira, Da Rosa	Academic Press Oxford, UK; 2013. ISBN: 9780123978257.
11	Industrial Solid Waste	Patvardhan, A. D	Teri Press, New Delhi, 2013, ISBN:978-81-7993-502-6
12	Waste Water Engineering	Metcalf & Eddy	Mc-Graw Hill, New York, 2013, ISBN: 077441206
13	Perspective in Environmental Studies	Anubha Kaushik and C P Kaushik	New Age International Publisher, New Delhi ISBN: 978-93-86418-63-0
14	National Environmental Policy 2006	Govt. of India, Ministry of Environment and Forest.	Approved by the Union Cabinet on 18 May, 2006
15	National Green Tribunal Act, 2010	Ministry of Law and Justice (Legislative Dept.),	The Gazette of India New Delhi, Wednesday, June 2, 2010.

Curriculum Development cell, State Council for Technical Education, Directorate of Technical Education, Assam

Sl. No.	Name	Designation
1	Shri Dhrubajyoti Borah, ACS	Director of Technical Education, Assam
2	Dr. Indrani Gogoi	Joint Director, DTE, Assam
3	Dr. Mrinalini Das	Controller of Examinations, State Council for Technical Education, DTE, Assam
4	Shri Ankush Borgohain	Training cum Placement Officer, DTE, Assam
5	Shri Ashok Das	Principal, Assam Textile Institute
6	Dr. Utpal Baruah	Principal, Kamrup Polytechnic
7	Shri Boobool Sarma	Assistant Controller of Examinations, SCTE, DTE, Assam

Subject-wise Committees for Curriculum of Diploma in Engineering & Technology (2nd Semester)

Mathematics:

Sl No.	Name	Institute	Designation
1	Dr. Geetali Das, Lecturer(SG)	Assam Engineering Institute, Guwahati	Member Secretary
2	Dr. Parbin Ahmed, Lecturer(SG)	Assam Textile Institute, Guwahati	Member
3	Dr. Sampa Das, Lecturer (SG)	Dibrugarh Polytechnic, Dibrugarh	Member
4	Mrs. Gayatree Kakati Boruah.	PCPS Girls' Polytechnic, Guwahati	Member

Physics:

Sl No.	Name	Institute	Designation
1	Dr.TulikaTamuly, Lecturer	Dibrugarh Polytechnic, Dibrugarh	Member Secretary
2	Dr. Snigdha Bhattacharjee, Lecturer	Karimganj Polytechnic, Karimganj	Member
	Mr. Monzurul Kader Ahmed, Lecturer	Goalpara Polytechnic, Goalpara	Member
4	Mr. Prokash Pegu, Lecturer	Dibrugarh Polytechnic, Dibrugarh	Member

Sub-Committee for Applied Physics:

Sl No.	Name	Institute	Designation
	Dr. Purabi Gogoi, Assistant Professor	DUIET, Dibrugarh University	Member
	Mr. Jyotinav Mudiar, Assistant Manager	IOCL, Bongaigaon Refinery	Member
3	Dr. Samiran Hazarika, Lecturer	Bongaigaon Polytechnic	Member
4	Mr. Sanjeeb Kalita, Lecturer	Baksa Polytechnic	Member
5.	Himanshu Sharma Pathok, Lecturer	POWIET, Jorhat	Member

Introduction to IT Systems:

Sl No.	Name	Institute	Designation
	Smt. Plabita Borbora, HoD, Computer Engineering	Assam Engineering Institute	Member Secretary
2	Maushumi Lahon, Lecturer (SG)	Assam Engineering Institute	Member
3	Sankha Pani Bharali, Lecturer (SG)	PCPS Girls Polytechnic	Member

Fundamentals of Electrical and Electronics Engineering:

Sl No.	Name	Institute	Designation
1	Shri Bhupati Das, Principal (i/c)	Nalbari Polytechnic	Member Secretary
2	Dr. Mitali Chakravorty, HOD (i/c)	Assam Engineering Institute	Member
3	Shri Bubumani Kalita, Lecturer (PT)	Nalbari Polytechnic	Member

Engineering Mechanics:

Sl No.	Name	Institute	Designation
1	Dr. Krishna Kamal Das, Member Secretary of Civil Engg Syllabus Committee	Bongaigaon Polytechnic	March er Connetore
2	Shri Ram Krishna Pathak, Member Secretary of Mechanical Engg Syllabus Committee	Dibrugarh Polytechnic	—Member Secretary
3	Dr. Dimbalita Deka, Assistant Professor	Golaghat Engineering College	Member
4	Zeenat Arman, Lecturer	Barpeta Polytechnic	Member
5	Chiranjeeb Barua, Lecturer	Barpeta Polytechnic	Member
6	Anusuya Gowami, Lecturer	Sonitpur Polytechnic	Member
7	Bidisha borthakur, Lecturer	Golaghat polytechnic	Member

Environmental Science:

Sl No.	Name	Institute	Designation
1	Smt. Anita Saikia, Lecturer (SG)	Assam EngineeringInstitute	Member Secretary
2	Shri Ramen Bharali, Lecturer (SG)	Nowgong Polytechnic	Member
3	Shri Bedanta Barhoi, Lecturer (PT)	Lakhimpur Polytechnic	Member
4	Shri Pankaj Goswami, Lecturer (SG)	Silchar Polytechnic	Member
5	Mr. Tayab Ali, Lecturer (SS)	POWIET, Jorhat	Member
6	Shri DebabrataTalukdar, Lecturer (SG)	Silchar Polytechnic	Member

REVIEWERS:

- 1. Md. Sabikur Rahman, Jorhat Engineering College.
- 2. Dr. Afazuddin Ahmed, Assam Engineering College.
- 3. Dr. Gitanjali Mazumdar, Assam Engineering College.
- 4. Mr. Kishor Kumar Das, Assam Engineering College.
- 5. Dr. Pankaja Das, Assam Engineering College.
- 6. Ms. Anakshi Das, Assam Engineering College.
- 7. Dr. Parasa Hazarika, Jorhat Institute of Science & Technology.
- 8. Dr. Monisa Rajkhowa, Jorhat Institute of Science & Technology.
- 9. Dr. Chandra Chutia, Jorhat Institute of Science & Technology.
- 10. Dr. Diganta Goswami, Barak Valley Engineering College.
- 11. Dr. Satyajit Paul, Golaghat Engineering College.
- 12. Smt. Saheera Azmi Hazarika, Dhemaji Engineering College.
- 13. Mr. Jameson Mushahary, Jorhat Institute of Science & Technology.
- 14. Smt. Dibyajyoti Saikia, Bineswar Brahma Engineering College.
- 15. Mr. Anjan Kr. Kakati, Bineswar Brahma Engineering College.
- 16. Dr. Medalson Ronghang, Bineswar Brahma Engineering College.
- 17. Dr. Kamaljyoti Talukdar, Bineswar Brahma Engineering College.

####